| Step | Hyp | Ref | Expression | 
						
							| 1 |  | imo72b2lem2.1 | ⊢ ( 𝜑  →  𝐹 : ℝ ⟶ ℝ ) | 
						
							| 2 |  | imo72b2lem2.2 | ⊢ ( 𝜑  →  𝐶  ∈  ℝ ) | 
						
							| 3 |  | imo72b2lem2.3 | ⊢ ( 𝜑  →  ∀ 𝑧  ∈  ℝ ( abs ‘ ( 𝐹 ‘ 𝑧 ) )  ≤  𝐶 ) | 
						
							| 4 |  | imaco | ⊢ ( ( abs  ∘  𝐹 )  “  ℝ )  =  ( abs  “  ( 𝐹  “  ℝ ) ) | 
						
							| 5 | 4 | eqcomi | ⊢ ( abs  “  ( 𝐹  “  ℝ ) )  =  ( ( abs  ∘  𝐹 )  “  ℝ ) | 
						
							| 6 |  | imassrn | ⊢ ( ( abs  ∘  𝐹 )  “  ℝ )  ⊆  ran  ( abs  ∘  𝐹 ) | 
						
							| 7 | 6 | a1i | ⊢ ( 𝜑  →  ( ( abs  ∘  𝐹 )  “  ℝ )  ⊆  ran  ( abs  ∘  𝐹 ) ) | 
						
							| 8 |  | absf | ⊢ abs : ℂ ⟶ ℝ | 
						
							| 9 | 8 | a1i | ⊢ ( 𝜑  →  abs : ℂ ⟶ ℝ ) | 
						
							| 10 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 11 | 10 | a1i | ⊢ ( 𝜑  →  ℝ  ⊆  ℂ ) | 
						
							| 12 | 9 11 | fssresd | ⊢ ( 𝜑  →  ( abs  ↾  ℝ ) : ℝ ⟶ ℝ ) | 
						
							| 13 | 1 12 | fco2d | ⊢ ( 𝜑  →  ( abs  ∘  𝐹 ) : ℝ ⟶ ℝ ) | 
						
							| 14 | 13 | frnd | ⊢ ( 𝜑  →  ran  ( abs  ∘  𝐹 )  ⊆  ℝ ) | 
						
							| 15 | 7 14 | sstrd | ⊢ ( 𝜑  →  ( ( abs  ∘  𝐹 )  “  ℝ )  ⊆  ℝ ) | 
						
							| 16 | 5 15 | eqsstrid | ⊢ ( 𝜑  →  ( abs  “  ( 𝐹  “  ℝ ) )  ⊆  ℝ ) | 
						
							| 17 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 18 | 17 | ne0ii | ⊢ ℝ  ≠  ∅ | 
						
							| 19 | 18 | a1i | ⊢ ( 𝜑  →  ℝ  ≠  ∅ ) | 
						
							| 20 | 19 13 | wnefimgd | ⊢ ( 𝜑  →  ( ( abs  ∘  𝐹 )  “  ℝ )  ≠  ∅ ) | 
						
							| 21 | 20 | necomd | ⊢ ( 𝜑  →  ∅  ≠  ( ( abs  ∘  𝐹 )  “  ℝ ) ) | 
						
							| 22 | 5 | a1i | ⊢ ( 𝜑  →  ( abs  “  ( 𝐹  “  ℝ ) )  =  ( ( abs  ∘  𝐹 )  “  ℝ ) ) | 
						
							| 23 | 21 22 | neeqtrrd | ⊢ ( 𝜑  →  ∅  ≠  ( abs  “  ( 𝐹  “  ℝ ) ) ) | 
						
							| 24 | 23 | necomd | ⊢ ( 𝜑  →  ( abs  “  ( 𝐹  “  ℝ ) )  ≠  ∅ ) | 
						
							| 25 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑐  =  𝐶 )  →  𝑐  =  𝐶 ) | 
						
							| 26 | 25 | breq2d | ⊢ ( ( 𝜑  ∧  𝑐  =  𝐶 )  →  ( 𝑣  ≤  𝑐  ↔  𝑣  ≤  𝐶 ) ) | 
						
							| 27 | 26 | ralbidv | ⊢ ( ( 𝜑  ∧  𝑐  =  𝐶 )  →  ( ∀ 𝑣  ∈  ( abs  “  ( 𝐹  “  ℝ ) ) 𝑣  ≤  𝑐  ↔  ∀ 𝑣  ∈  ( abs  “  ( 𝐹  “  ℝ ) ) 𝑣  ≤  𝐶 ) ) | 
						
							| 28 | 1 3 | extoimad | ⊢ ( 𝜑  →  ∀ 𝑣  ∈  ( abs  “  ( 𝐹  “  ℝ ) ) 𝑣  ≤  𝐶 ) | 
						
							| 29 | 2 27 28 | rspcedvd | ⊢ ( 𝜑  →  ∃ 𝑐  ∈  ℝ ∀ 𝑣  ∈  ( abs  “  ( 𝐹  “  ℝ ) ) 𝑣  ≤  𝑐 ) | 
						
							| 30 | 1 3 | extoimad | ⊢ ( 𝜑  →  ∀ 𝑡  ∈  ( abs  “  ( 𝐹  “  ℝ ) ) 𝑡  ≤  𝐶 ) | 
						
							| 31 | 16 24 29 2 30 | suprleubrd | ⊢ ( 𝜑  →  sup ( ( abs  “  ( 𝐹  “  ℝ ) ) ,  ℝ ,   <  )  ≤  𝐶 ) |