Metamath Proof Explorer


Theorem imo72b2lem2

Description: Lemma for imo72b2 . (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypotheses imo72b2lem2.1 ( 𝜑𝐹 : ℝ ⟶ ℝ )
imo72b2lem2.2 ( 𝜑𝐶 ∈ ℝ )
imo72b2lem2.3 ( 𝜑 → ∀ 𝑧 ∈ ℝ ( abs ‘ ( 𝐹𝑧 ) ) ≤ 𝐶 )
Assertion imo72b2lem2 ( 𝜑 → sup ( ( abs “ ( 𝐹 “ ℝ ) ) , ℝ , < ) ≤ 𝐶 )

Proof

Step Hyp Ref Expression
1 imo72b2lem2.1 ( 𝜑𝐹 : ℝ ⟶ ℝ )
2 imo72b2lem2.2 ( 𝜑𝐶 ∈ ℝ )
3 imo72b2lem2.3 ( 𝜑 → ∀ 𝑧 ∈ ℝ ( abs ‘ ( 𝐹𝑧 ) ) ≤ 𝐶 )
4 imaco ( ( abs ∘ 𝐹 ) “ ℝ ) = ( abs “ ( 𝐹 “ ℝ ) )
5 4 eqcomi ( abs “ ( 𝐹 “ ℝ ) ) = ( ( abs ∘ 𝐹 ) “ ℝ )
6 imassrn ( ( abs ∘ 𝐹 ) “ ℝ ) ⊆ ran ( abs ∘ 𝐹 )
7 6 a1i ( 𝜑 → ( ( abs ∘ 𝐹 ) “ ℝ ) ⊆ ran ( abs ∘ 𝐹 ) )
8 absf abs : ℂ ⟶ ℝ
9 8 a1i ( 𝜑 → abs : ℂ ⟶ ℝ )
10 ax-resscn ℝ ⊆ ℂ
11 10 a1i ( 𝜑 → ℝ ⊆ ℂ )
12 9 11 fssresd ( 𝜑 → ( abs ↾ ℝ ) : ℝ ⟶ ℝ )
13 1 12 fco2d ( 𝜑 → ( abs ∘ 𝐹 ) : ℝ ⟶ ℝ )
14 13 frnd ( 𝜑 → ran ( abs ∘ 𝐹 ) ⊆ ℝ )
15 7 14 sstrd ( 𝜑 → ( ( abs ∘ 𝐹 ) “ ℝ ) ⊆ ℝ )
16 5 15 eqsstrid ( 𝜑 → ( abs “ ( 𝐹 “ ℝ ) ) ⊆ ℝ )
17 0re 0 ∈ ℝ
18 17 ne0ii ℝ ≠ ∅
19 18 a1i ( 𝜑 → ℝ ≠ ∅ )
20 19 13 wnefimgd ( 𝜑 → ( ( abs ∘ 𝐹 ) “ ℝ ) ≠ ∅ )
21 20 necomd ( 𝜑 → ∅ ≠ ( ( abs ∘ 𝐹 ) “ ℝ ) )
22 5 a1i ( 𝜑 → ( abs “ ( 𝐹 “ ℝ ) ) = ( ( abs ∘ 𝐹 ) “ ℝ ) )
23 21 22 neeqtrrd ( 𝜑 → ∅ ≠ ( abs “ ( 𝐹 “ ℝ ) ) )
24 23 necomd ( 𝜑 → ( abs “ ( 𝐹 “ ℝ ) ) ≠ ∅ )
25 simpr ( ( 𝜑𝑐 = 𝐶 ) → 𝑐 = 𝐶 )
26 25 breq2d ( ( 𝜑𝑐 = 𝐶 ) → ( 𝑣𝑐𝑣𝐶 ) )
27 26 ralbidv ( ( 𝜑𝑐 = 𝐶 ) → ( ∀ 𝑣 ∈ ( abs “ ( 𝐹 “ ℝ ) ) 𝑣𝑐 ↔ ∀ 𝑣 ∈ ( abs “ ( 𝐹 “ ℝ ) ) 𝑣𝐶 ) )
28 1 3 extoimad ( 𝜑 → ∀ 𝑣 ∈ ( abs “ ( 𝐹 “ ℝ ) ) 𝑣𝐶 )
29 2 27 28 rspcedvd ( 𝜑 → ∃ 𝑐 ∈ ℝ ∀ 𝑣 ∈ ( abs “ ( 𝐹 “ ℝ ) ) 𝑣𝑐 )
30 1 3 extoimad ( 𝜑 → ∀ 𝑡 ∈ ( abs “ ( 𝐹 “ ℝ ) ) 𝑡𝐶 )
31 16 24 29 2 30 suprleubrd ( 𝜑 → sup ( ( abs “ ( 𝐹 “ ℝ ) ) , ℝ , < ) ≤ 𝐶 )