Step |
Hyp |
Ref |
Expression |
1 |
|
imo72b2lem2.1 |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) |
2 |
|
imo72b2lem2.2 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
3 |
|
imo72b2lem2.3 |
⊢ ( 𝜑 → ∀ 𝑧 ∈ ℝ ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝐶 ) |
4 |
|
imaco |
⊢ ( ( abs ∘ 𝐹 ) “ ℝ ) = ( abs “ ( 𝐹 “ ℝ ) ) |
5 |
4
|
eqcomi |
⊢ ( abs “ ( 𝐹 “ ℝ ) ) = ( ( abs ∘ 𝐹 ) “ ℝ ) |
6 |
|
imassrn |
⊢ ( ( abs ∘ 𝐹 ) “ ℝ ) ⊆ ran ( abs ∘ 𝐹 ) |
7 |
6
|
a1i |
⊢ ( 𝜑 → ( ( abs ∘ 𝐹 ) “ ℝ ) ⊆ ran ( abs ∘ 𝐹 ) ) |
8 |
|
absf |
⊢ abs : ℂ ⟶ ℝ |
9 |
8
|
a1i |
⊢ ( 𝜑 → abs : ℂ ⟶ ℝ ) |
10 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
11 |
10
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
12 |
9 11
|
fssresd |
⊢ ( 𝜑 → ( abs ↾ ℝ ) : ℝ ⟶ ℝ ) |
13 |
1 12
|
fco2d |
⊢ ( 𝜑 → ( abs ∘ 𝐹 ) : ℝ ⟶ ℝ ) |
14 |
13
|
frnd |
⊢ ( 𝜑 → ran ( abs ∘ 𝐹 ) ⊆ ℝ ) |
15 |
7 14
|
sstrd |
⊢ ( 𝜑 → ( ( abs ∘ 𝐹 ) “ ℝ ) ⊆ ℝ ) |
16 |
5 15
|
eqsstrid |
⊢ ( 𝜑 → ( abs “ ( 𝐹 “ ℝ ) ) ⊆ ℝ ) |
17 |
|
0re |
⊢ 0 ∈ ℝ |
18 |
17
|
ne0ii |
⊢ ℝ ≠ ∅ |
19 |
18
|
a1i |
⊢ ( 𝜑 → ℝ ≠ ∅ ) |
20 |
19 13
|
wnefimgd |
⊢ ( 𝜑 → ( ( abs ∘ 𝐹 ) “ ℝ ) ≠ ∅ ) |
21 |
20
|
necomd |
⊢ ( 𝜑 → ∅ ≠ ( ( abs ∘ 𝐹 ) “ ℝ ) ) |
22 |
5
|
a1i |
⊢ ( 𝜑 → ( abs “ ( 𝐹 “ ℝ ) ) = ( ( abs ∘ 𝐹 ) “ ℝ ) ) |
23 |
21 22
|
neeqtrrd |
⊢ ( 𝜑 → ∅ ≠ ( abs “ ( 𝐹 “ ℝ ) ) ) |
24 |
23
|
necomd |
⊢ ( 𝜑 → ( abs “ ( 𝐹 “ ℝ ) ) ≠ ∅ ) |
25 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑐 = 𝐶 ) → 𝑐 = 𝐶 ) |
26 |
25
|
breq2d |
⊢ ( ( 𝜑 ∧ 𝑐 = 𝐶 ) → ( 𝑣 ≤ 𝑐 ↔ 𝑣 ≤ 𝐶 ) ) |
27 |
26
|
ralbidv |
⊢ ( ( 𝜑 ∧ 𝑐 = 𝐶 ) → ( ∀ 𝑣 ∈ ( abs “ ( 𝐹 “ ℝ ) ) 𝑣 ≤ 𝑐 ↔ ∀ 𝑣 ∈ ( abs “ ( 𝐹 “ ℝ ) ) 𝑣 ≤ 𝐶 ) ) |
28 |
1 3
|
extoimad |
⊢ ( 𝜑 → ∀ 𝑣 ∈ ( abs “ ( 𝐹 “ ℝ ) ) 𝑣 ≤ 𝐶 ) |
29 |
2 27 28
|
rspcedvd |
⊢ ( 𝜑 → ∃ 𝑐 ∈ ℝ ∀ 𝑣 ∈ ( abs “ ( 𝐹 “ ℝ ) ) 𝑣 ≤ 𝑐 ) |
30 |
1 3
|
extoimad |
⊢ ( 𝜑 → ∀ 𝑡 ∈ ( abs “ ( 𝐹 “ ℝ ) ) 𝑡 ≤ 𝐶 ) |
31 |
16 24 29 2 30
|
suprleubrd |
⊢ ( 𝜑 → sup ( ( abs “ ( 𝐹 “ ℝ ) ) , ℝ , < ) ≤ 𝐶 ) |