| Step | Hyp | Ref | Expression | 
						
							| 1 |  | imo72b2.1 | ⊢ ( 𝜑  →  𝐹 : ℝ ⟶ ℝ ) | 
						
							| 2 |  | imo72b2.2 | ⊢ ( 𝜑  →  𝐺 : ℝ ⟶ ℝ ) | 
						
							| 3 |  | imo72b2.4 | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 4 |  | imo72b2.5 | ⊢ ( 𝜑  →  ∀ 𝑢  ∈  ℝ ∀ 𝑣  ∈  ℝ ( ( 𝐹 ‘ ( 𝑢  +  𝑣 ) )  +  ( 𝐹 ‘ ( 𝑢  −  𝑣 ) ) )  =  ( 2  ·  ( ( 𝐹 ‘ 𝑢 )  ·  ( 𝐺 ‘ 𝑣 ) ) ) ) | 
						
							| 5 |  | imo72b2.6 | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  ℝ ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  1 ) | 
						
							| 6 |  | imo72b2.7 | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  ℝ ( 𝐹 ‘ 𝑥 )  ≠  0 ) | 
						
							| 7 | 2 3 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 8 | 7 | recnd | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝐵 )  ∈  ℂ ) | 
						
							| 9 | 8 | abscld | ⊢ ( 𝜑  →  ( abs ‘ ( 𝐺 ‘ 𝐵 ) )  ∈  ℝ ) | 
						
							| 10 |  | 1red | ⊢ ( 𝜑  →  1  ∈  ℝ ) | 
						
							| 11 |  | simpr | ⊢ ( ( 𝜑  ∧  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  →  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) ) | 
						
							| 12 | 2 | adantr | ⊢ ( ( 𝜑  ∧  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  →  𝐺 : ℝ ⟶ ℝ ) | 
						
							| 13 | 3 | adantr | ⊢ ( ( 𝜑  ∧  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  →  𝐵  ∈  ℝ ) | 
						
							| 14 | 12 13 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  →  ( 𝐺 ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 15 | 14 | recnd | ⊢ ( ( 𝜑  ∧  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  →  ( 𝐺 ‘ 𝐵 )  ∈  ℂ ) | 
						
							| 16 | 15 | abscld | ⊢ ( ( 𝜑  ∧  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  →  ( abs ‘ ( 𝐺 ‘ 𝐵 ) )  ∈  ℝ ) | 
						
							| 17 | 10 | adantr | ⊢ ( ( 𝜑  ∧  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  →  1  ∈  ℝ ) | 
						
							| 18 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 19 |  | imaco | ⊢ ( ( abs  ∘  𝐹 )  “  ℝ )  =  ( abs  “  ( 𝐹  “  ℝ ) ) | 
						
							| 20 | 19 | eqcomi | ⊢ ( abs  “  ( 𝐹  “  ℝ ) )  =  ( ( abs  ∘  𝐹 )  “  ℝ ) | 
						
							| 21 |  | imassrn | ⊢ ( ( abs  ∘  𝐹 )  “  ℝ )  ⊆  ran  ( abs  ∘  𝐹 ) | 
						
							| 22 | 21 | a1i | ⊢ ( ( 𝜑  ∧  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  →  ( ( abs  ∘  𝐹 )  “  ℝ )  ⊆  ran  ( abs  ∘  𝐹 ) ) | 
						
							| 23 | 1 | adantr | ⊢ ( ( 𝜑  ∧  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  →  𝐹 : ℝ ⟶ ℝ ) | 
						
							| 24 |  | absf | ⊢ abs : ℂ ⟶ ℝ | 
						
							| 25 | 24 | a1i | ⊢ ( ( 𝜑  ∧  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  →  abs : ℂ ⟶ ℝ ) | 
						
							| 26 | 18 | a1i | ⊢ ( ( 𝜑  ∧  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  →  ℝ  ⊆  ℂ ) | 
						
							| 27 | 25 26 | fssresd | ⊢ ( ( 𝜑  ∧  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  →  ( abs  ↾  ℝ ) : ℝ ⟶ ℝ ) | 
						
							| 28 | 23 27 | fco2d | ⊢ ( ( 𝜑  ∧  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  →  ( abs  ∘  𝐹 ) : ℝ ⟶ ℝ ) | 
						
							| 29 | 28 | frnd | ⊢ ( ( 𝜑  ∧  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  →  ran  ( abs  ∘  𝐹 )  ⊆  ℝ ) | 
						
							| 30 | 22 29 | sstrd | ⊢ ( ( 𝜑  ∧  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  →  ( ( abs  ∘  𝐹 )  “  ℝ )  ⊆  ℝ ) | 
						
							| 31 | 20 30 | eqsstrid | ⊢ ( ( 𝜑  ∧  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  →  ( abs  “  ( 𝐹  “  ℝ ) )  ⊆  ℝ ) | 
						
							| 32 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 33 | 32 | ne0ii | ⊢ ℝ  ≠  ∅ | 
						
							| 34 | 33 | a1i | ⊢ ( ( 𝜑  ∧  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  →  ℝ  ≠  ∅ ) | 
						
							| 35 | 34 28 | wnefimgd | ⊢ ( ( 𝜑  ∧  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  →  ( ( abs  ∘  𝐹 )  “  ℝ )  ≠  ∅ ) | 
						
							| 36 | 35 | necomd | ⊢ ( ( 𝜑  ∧  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  →  ∅  ≠  ( ( abs  ∘  𝐹 )  “  ℝ ) ) | 
						
							| 37 | 20 | a1i | ⊢ ( ( 𝜑  ∧  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  →  ( abs  “  ( 𝐹  “  ℝ ) )  =  ( ( abs  ∘  𝐹 )  “  ℝ ) ) | 
						
							| 38 | 36 37 | neeqtrrd | ⊢ ( ( 𝜑  ∧  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  →  ∅  ≠  ( abs  “  ( 𝐹  “  ℝ ) ) ) | 
						
							| 39 | 38 | necomd | ⊢ ( ( 𝜑  ∧  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  →  ( abs  “  ( 𝐹  “  ℝ ) )  ≠  ∅ ) | 
						
							| 40 |  | simpr | ⊢ ( ( ( 𝜑  ∧  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  ∧  𝑐  =  1 )  →  𝑐  =  1 ) | 
						
							| 41 | 40 | breq2d | ⊢ ( ( ( 𝜑  ∧  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  ∧  𝑐  =  1 )  →  ( 𝑡  ≤  𝑐  ↔  𝑡  ≤  1 ) ) | 
						
							| 42 | 41 | ralbidv | ⊢ ( ( ( 𝜑  ∧  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  ∧  𝑐  =  1 )  →  ( ∀ 𝑡  ∈  ( abs  “  ( 𝐹  “  ℝ ) ) 𝑡  ≤  𝑐  ↔  ∀ 𝑡  ∈  ( abs  “  ( 𝐹  “  ℝ ) ) 𝑡  ≤  1 ) ) | 
						
							| 43 | 1 5 | extoimad | ⊢ ( 𝜑  →  ∀ 𝑡  ∈  ( abs  “  ( 𝐹  “  ℝ ) ) 𝑡  ≤  1 ) | 
						
							| 44 | 43 | adantr | ⊢ ( ( 𝜑  ∧  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  →  ∀ 𝑡  ∈  ( abs  “  ( 𝐹  “  ℝ ) ) 𝑡  ≤  1 ) | 
						
							| 45 | 17 42 44 | rspcedvd | ⊢ ( ( 𝜑  ∧  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  →  ∃ 𝑐  ∈  ℝ ∀ 𝑡  ∈  ( abs  “  ( 𝐹  “  ℝ ) ) 𝑡  ≤  𝑐 ) | 
						
							| 46 | 31 39 45 | suprcld | ⊢ ( ( 𝜑  ∧  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  →  sup ( ( abs  “  ( 𝐹  “  ℝ ) ) ,  ℝ ,   <  )  ∈  ℝ ) | 
						
							| 47 | 18 46 | sselid | ⊢ ( ( 𝜑  ∧  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  →  sup ( ( abs  “  ( 𝐹  “  ℝ ) ) ,  ℝ ,   <  )  ∈  ℂ ) | 
						
							| 48 | 18 16 | sselid | ⊢ ( ( 𝜑  ∧  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  →  ( abs ‘ ( 𝐺 ‘ 𝐵 ) )  ∈  ℂ ) | 
						
							| 49 | 47 48 | mulcomd | ⊢ ( ( 𝜑  ∧  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  →  ( sup ( ( abs  “  ( 𝐹  “  ℝ ) ) ,  ℝ ,   <  )  ·  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  =  ( ( abs ‘ ( 𝐺 ‘ 𝐵 ) )  ·  sup ( ( abs  “  ( 𝐹  “  ℝ ) ) ,  ℝ ,   <  ) ) ) | 
						
							| 50 | 32 | a1i | ⊢ ( ( 𝜑  ∧  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  →  0  ∈  ℝ ) | 
						
							| 51 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 52 | 51 | a1i | ⊢ ( ( 𝜑  ∧  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  →  0  <  1 ) | 
						
							| 53 | 50 17 16 52 11 | lttrd | ⊢ ( ( 𝜑  ∧  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  →  0  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) ) | 
						
							| 54 | 53 | gt0ne0d | ⊢ ( ( 𝜑  ∧  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  →  ( abs ‘ ( 𝐺 ‘ 𝐵 ) )  ≠  0 ) | 
						
							| 55 | 46 16 54 | redivcld | ⊢ ( ( 𝜑  ∧  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  →  ( sup ( ( abs  “  ( 𝐹  “  ℝ ) ) ,  ℝ ,   <  )  /  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  ∈  ℝ ) | 
						
							| 56 | 23 | adantr | ⊢ ( ( ( 𝜑  ∧  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  ∧  𝑢  ∈  ℝ )  →  𝐹 : ℝ ⟶ ℝ ) | 
						
							| 57 | 12 | adantr | ⊢ ( ( ( 𝜑  ∧  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  ∧  𝑢  ∈  ℝ )  →  𝐺 : ℝ ⟶ ℝ ) | 
						
							| 58 |  | simpr | ⊢ ( ( ( 𝜑  ∧  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  ∧  𝑢  ∈  ℝ )  →  𝑢  ∈  ℝ ) | 
						
							| 59 | 13 | adantr | ⊢ ( ( ( 𝜑  ∧  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  ∧  𝑢  ∈  ℝ )  →  𝐵  ∈  ℝ ) | 
						
							| 60 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑣  =  𝐵 )  →  𝑣  =  𝐵 ) | 
						
							| 61 | 60 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑣  =  𝐵 )  →  ( 𝑢  +  𝑣 )  =  ( 𝑢  +  𝐵 ) ) | 
						
							| 62 | 61 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑣  =  𝐵 )  →  ( 𝐹 ‘ ( 𝑢  +  𝑣 ) )  =  ( 𝐹 ‘ ( 𝑢  +  𝐵 ) ) ) | 
						
							| 63 | 60 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑣  =  𝐵 )  →  ( 𝑢  −  𝑣 )  =  ( 𝑢  −  𝐵 ) ) | 
						
							| 64 | 63 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑣  =  𝐵 )  →  ( 𝐹 ‘ ( 𝑢  −  𝑣 ) )  =  ( 𝐹 ‘ ( 𝑢  −  𝐵 ) ) ) | 
						
							| 65 | 62 64 | oveq12d | ⊢ ( ( 𝜑  ∧  𝑣  =  𝐵 )  →  ( ( 𝐹 ‘ ( 𝑢  +  𝑣 ) )  +  ( 𝐹 ‘ ( 𝑢  −  𝑣 ) ) )  =  ( ( 𝐹 ‘ ( 𝑢  +  𝐵 ) )  +  ( 𝐹 ‘ ( 𝑢  −  𝐵 ) ) ) ) | 
						
							| 66 | 60 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑣  =  𝐵 )  →  ( 𝐺 ‘ 𝑣 )  =  ( 𝐺 ‘ 𝐵 ) ) | 
						
							| 67 | 66 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑣  =  𝐵 )  →  ( ( 𝐹 ‘ 𝑢 )  ·  ( 𝐺 ‘ 𝑣 ) )  =  ( ( 𝐹 ‘ 𝑢 )  ·  ( 𝐺 ‘ 𝐵 ) ) ) | 
						
							| 68 | 67 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑣  =  𝐵 )  →  ( 2  ·  ( ( 𝐹 ‘ 𝑢 )  ·  ( 𝐺 ‘ 𝑣 ) ) )  =  ( 2  ·  ( ( 𝐹 ‘ 𝑢 )  ·  ( 𝐺 ‘ 𝐵 ) ) ) ) | 
						
							| 69 | 65 68 | eqeq12d | ⊢ ( ( 𝜑  ∧  𝑣  =  𝐵 )  →  ( ( ( 𝐹 ‘ ( 𝑢  +  𝑣 ) )  +  ( 𝐹 ‘ ( 𝑢  −  𝑣 ) ) )  =  ( 2  ·  ( ( 𝐹 ‘ 𝑢 )  ·  ( 𝐺 ‘ 𝑣 ) ) )  ↔  ( ( 𝐹 ‘ ( 𝑢  +  𝐵 ) )  +  ( 𝐹 ‘ ( 𝑢  −  𝐵 ) ) )  =  ( 2  ·  ( ( 𝐹 ‘ 𝑢 )  ·  ( 𝐺 ‘ 𝐵 ) ) ) ) ) | 
						
							| 70 | 69 | ralbidv | ⊢ ( ( 𝜑  ∧  𝑣  =  𝐵 )  →  ( ∀ 𝑢  ∈  ℝ ( ( 𝐹 ‘ ( 𝑢  +  𝑣 ) )  +  ( 𝐹 ‘ ( 𝑢  −  𝑣 ) ) )  =  ( 2  ·  ( ( 𝐹 ‘ 𝑢 )  ·  ( 𝐺 ‘ 𝑣 ) ) )  ↔  ∀ 𝑢  ∈  ℝ ( ( 𝐹 ‘ ( 𝑢  +  𝐵 ) )  +  ( 𝐹 ‘ ( 𝑢  −  𝐵 ) ) )  =  ( 2  ·  ( ( 𝐹 ‘ 𝑢 )  ·  ( 𝐺 ‘ 𝐵 ) ) ) ) ) | 
						
							| 71 |  | ralcom | ⊢ ( ∀ 𝑢  ∈  ℝ ∀ 𝑣  ∈  ℝ ( ( 𝐹 ‘ ( 𝑢  +  𝑣 ) )  +  ( 𝐹 ‘ ( 𝑢  −  𝑣 ) ) )  =  ( 2  ·  ( ( 𝐹 ‘ 𝑢 )  ·  ( 𝐺 ‘ 𝑣 ) ) )  ↔  ∀ 𝑣  ∈  ℝ ∀ 𝑢  ∈  ℝ ( ( 𝐹 ‘ ( 𝑢  +  𝑣 ) )  +  ( 𝐹 ‘ ( 𝑢  −  𝑣 ) ) )  =  ( 2  ·  ( ( 𝐹 ‘ 𝑢 )  ·  ( 𝐺 ‘ 𝑣 ) ) ) ) | 
						
							| 72 | 71 | biimpi | ⊢ ( ∀ 𝑢  ∈  ℝ ∀ 𝑣  ∈  ℝ ( ( 𝐹 ‘ ( 𝑢  +  𝑣 ) )  +  ( 𝐹 ‘ ( 𝑢  −  𝑣 ) ) )  =  ( 2  ·  ( ( 𝐹 ‘ 𝑢 )  ·  ( 𝐺 ‘ 𝑣 ) ) )  →  ∀ 𝑣  ∈  ℝ ∀ 𝑢  ∈  ℝ ( ( 𝐹 ‘ ( 𝑢  +  𝑣 ) )  +  ( 𝐹 ‘ ( 𝑢  −  𝑣 ) ) )  =  ( 2  ·  ( ( 𝐹 ‘ 𝑢 )  ·  ( 𝐺 ‘ 𝑣 ) ) ) ) | 
						
							| 73 | 72 | a1i | ⊢ ( 𝜑  →  ( ∀ 𝑢  ∈  ℝ ∀ 𝑣  ∈  ℝ ( ( 𝐹 ‘ ( 𝑢  +  𝑣 ) )  +  ( 𝐹 ‘ ( 𝑢  −  𝑣 ) ) )  =  ( 2  ·  ( ( 𝐹 ‘ 𝑢 )  ·  ( 𝐺 ‘ 𝑣 ) ) )  →  ∀ 𝑣  ∈  ℝ ∀ 𝑢  ∈  ℝ ( ( 𝐹 ‘ ( 𝑢  +  𝑣 ) )  +  ( 𝐹 ‘ ( 𝑢  −  𝑣 ) ) )  =  ( 2  ·  ( ( 𝐹 ‘ 𝑢 )  ·  ( 𝐺 ‘ 𝑣 ) ) ) ) ) | 
						
							| 74 | 73 | imp | ⊢ ( ( 𝜑  ∧  ∀ 𝑢  ∈  ℝ ∀ 𝑣  ∈  ℝ ( ( 𝐹 ‘ ( 𝑢  +  𝑣 ) )  +  ( 𝐹 ‘ ( 𝑢  −  𝑣 ) ) )  =  ( 2  ·  ( ( 𝐹 ‘ 𝑢 )  ·  ( 𝐺 ‘ 𝑣 ) ) ) )  →  ∀ 𝑣  ∈  ℝ ∀ 𝑢  ∈  ℝ ( ( 𝐹 ‘ ( 𝑢  +  𝑣 ) )  +  ( 𝐹 ‘ ( 𝑢  −  𝑣 ) ) )  =  ( 2  ·  ( ( 𝐹 ‘ 𝑢 )  ·  ( 𝐺 ‘ 𝑣 ) ) ) ) | 
						
							| 75 | 4 74 | mpdan | ⊢ ( 𝜑  →  ∀ 𝑣  ∈  ℝ ∀ 𝑢  ∈  ℝ ( ( 𝐹 ‘ ( 𝑢  +  𝑣 ) )  +  ( 𝐹 ‘ ( 𝑢  −  𝑣 ) ) )  =  ( 2  ·  ( ( 𝐹 ‘ 𝑢 )  ·  ( 𝐺 ‘ 𝑣 ) ) ) ) | 
						
							| 76 | 70 3 75 | rspcdv2 | ⊢ ( 𝜑  →  ∀ 𝑢  ∈  ℝ ( ( 𝐹 ‘ ( 𝑢  +  𝐵 ) )  +  ( 𝐹 ‘ ( 𝑢  −  𝐵 ) ) )  =  ( 2  ·  ( ( 𝐹 ‘ 𝑢 )  ·  ( 𝐺 ‘ 𝐵 ) ) ) ) | 
						
							| 77 | 76 | r19.21bi | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ℝ )  →  ( ( 𝐹 ‘ ( 𝑢  +  𝐵 ) )  +  ( 𝐹 ‘ ( 𝑢  −  𝐵 ) ) )  =  ( 2  ·  ( ( 𝐹 ‘ 𝑢 )  ·  ( 𝐺 ‘ 𝐵 ) ) ) ) | 
						
							| 78 | 77 | adantlr | ⊢ ( ( ( 𝜑  ∧  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  ∧  𝑢  ∈  ℝ )  →  ( ( 𝐹 ‘ ( 𝑢  +  𝐵 ) )  +  ( 𝐹 ‘ ( 𝑢  −  𝐵 ) ) )  =  ( 2  ·  ( ( 𝐹 ‘ 𝑢 )  ·  ( 𝐺 ‘ 𝐵 ) ) ) ) | 
						
							| 79 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  ∧  𝑢  ∈  ℝ )  →  ∀ 𝑦  ∈  ℝ ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  1 ) | 
						
							| 80 | 56 57 58 59 78 79 | imo72b2lem0 | ⊢ ( ( ( 𝜑  ∧  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  ∧  𝑢  ∈  ℝ )  →  ( ( abs ‘ ( 𝐹 ‘ 𝑢 ) )  ·  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  ≤  sup ( ( abs  “  ( 𝐹  “  ℝ ) ) ,  ℝ ,   <  ) ) | 
						
							| 81 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 82 | 81 | a1i | ⊢ ( ( ( 𝜑  ∧  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  ∧  𝑢  ∈  ℝ )  →  0  ∈  ℝ* ) | 
						
							| 83 |  | 1xr | ⊢ 1  ∈  ℝ* | 
						
							| 84 | 83 | a1i | ⊢ ( ( ( 𝜑  ∧  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  ∧  𝑢  ∈  ℝ )  →  1  ∈  ℝ* ) | 
						
							| 85 | 16 | adantr | ⊢ ( ( ( 𝜑  ∧  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  ∧  𝑢  ∈  ℝ )  →  ( abs ‘ ( 𝐺 ‘ 𝐵 ) )  ∈  ℝ ) | 
						
							| 86 | 85 | rexrd | ⊢ ( ( ( 𝜑  ∧  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  ∧  𝑢  ∈  ℝ )  →  ( abs ‘ ( 𝐺 ‘ 𝐵 ) )  ∈  ℝ* ) | 
						
							| 87 | 51 | a1i | ⊢ ( ( ( 𝜑  ∧  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  ∧  𝑢  ∈  ℝ )  →  0  <  1 ) | 
						
							| 88 |  | simplr | ⊢ ( ( ( 𝜑  ∧  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  ∧  𝑢  ∈  ℝ )  →  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) ) | 
						
							| 89 | 82 84 86 87 88 | xrlttrd | ⊢ ( ( ( 𝜑  ∧  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  ∧  𝑢  ∈  ℝ )  →  0  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) ) | 
						
							| 90 | 23 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  ∧  𝑢  ∈  ℝ )  →  ( 𝐹 ‘ 𝑢 )  ∈  ℝ ) | 
						
							| 91 | 90 | recnd | ⊢ ( ( ( 𝜑  ∧  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  ∧  𝑢  ∈  ℝ )  →  ( 𝐹 ‘ 𝑢 )  ∈  ℂ ) | 
						
							| 92 | 91 | abscld | ⊢ ( ( ( 𝜑  ∧  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  ∧  𝑢  ∈  ℝ )  →  ( abs ‘ ( 𝐹 ‘ 𝑢 ) )  ∈  ℝ ) | 
						
							| 93 | 46 | adantr | ⊢ ( ( ( 𝜑  ∧  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  ∧  𝑢  ∈  ℝ )  →  sup ( ( abs  “  ( 𝐹  “  ℝ ) ) ,  ℝ ,   <  )  ∈  ℝ ) | 
						
							| 94 | 80 89 85 92 93 | lemuldiv3d | ⊢ ( ( ( 𝜑  ∧  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  ∧  𝑢  ∈  ℝ )  →  ( abs ‘ ( 𝐹 ‘ 𝑢 ) )  ≤  ( sup ( ( abs  “  ( 𝐹  “  ℝ ) ) ,  ℝ ,   <  )  /  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) ) ) | 
						
							| 95 | 94 | ralrimiva | ⊢ ( ( 𝜑  ∧  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  →  ∀ 𝑢  ∈  ℝ ( abs ‘ ( 𝐹 ‘ 𝑢 ) )  ≤  ( sup ( ( abs  “  ( 𝐹  “  ℝ ) ) ,  ℝ ,   <  )  /  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) ) ) | 
						
							| 96 | 23 55 95 | imo72b2lem2 | ⊢ ( ( 𝜑  ∧  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  →  sup ( ( abs  “  ( 𝐹  “  ℝ ) ) ,  ℝ ,   <  )  ≤  ( sup ( ( abs  “  ( 𝐹  “  ℝ ) ) ,  ℝ ,   <  )  /  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) ) ) | 
						
							| 97 | 96 53 16 46 46 | lemuldiv4d | ⊢ ( ( 𝜑  ∧  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  →  ( sup ( ( abs  “  ( 𝐹  “  ℝ ) ) ,  ℝ ,   <  )  ·  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  ≤  sup ( ( abs  “  ( 𝐹  “  ℝ ) ) ,  ℝ ,   <  ) ) | 
						
							| 98 | 49 97 | eqbrtrrd | ⊢ ( ( 𝜑  ∧  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  →  ( ( abs ‘ ( 𝐺 ‘ 𝐵 ) )  ·  sup ( ( abs  “  ( 𝐹  “  ℝ ) ) ,  ℝ ,   <  ) )  ≤  sup ( ( abs  “  ( 𝐹  “  ℝ ) ) ,  ℝ ,   <  ) ) | 
						
							| 99 | 6 | adantr | ⊢ ( ( 𝜑  ∧  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  →  ∃ 𝑥  ∈  ℝ ( 𝐹 ‘ 𝑥 )  ≠  0 ) | 
						
							| 100 | 5 | adantr | ⊢ ( ( 𝜑  ∧  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  →  ∀ 𝑦  ∈  ℝ ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  1 ) | 
						
							| 101 | 23 99 100 | imo72b2lem1 | ⊢ ( ( 𝜑  ∧  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  →  0  <  sup ( ( abs  “  ( 𝐹  “  ℝ ) ) ,  ℝ ,   <  ) ) | 
						
							| 102 | 98 101 46 16 46 | lemuldiv3d | ⊢ ( ( 𝜑  ∧  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  →  ( abs ‘ ( 𝐺 ‘ 𝐵 ) )  ≤  ( sup ( ( abs  “  ( 𝐹  “  ℝ ) ) ,  ℝ ,   <  )  /  sup ( ( abs  “  ( 𝐹  “  ℝ ) ) ,  ℝ ,   <  ) ) ) | 
						
							| 103 | 26 46 | sseldd | ⊢ ( ( 𝜑  ∧  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  →  sup ( ( abs  “  ( 𝐹  “  ℝ ) ) ,  ℝ ,   <  )  ∈  ℂ ) | 
						
							| 104 | 101 | gt0ne0d | ⊢ ( ( 𝜑  ∧  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  →  sup ( ( abs  “  ( 𝐹  “  ℝ ) ) ,  ℝ ,   <  )  ≠  0 ) | 
						
							| 105 | 103 104 | dividd | ⊢ ( ( 𝜑  ∧  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  →  ( sup ( ( abs  “  ( 𝐹  “  ℝ ) ) ,  ℝ ,   <  )  /  sup ( ( abs  “  ( 𝐹  “  ℝ ) ) ,  ℝ ,   <  ) )  =  1 ) | 
						
							| 106 | 105 | eqcomd | ⊢ ( ( 𝜑  ∧  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  →  1  =  ( sup ( ( abs  “  ( 𝐹  “  ℝ ) ) ,  ℝ ,   <  )  /  sup ( ( abs  “  ( 𝐹  “  ℝ ) ) ,  ℝ ,   <  ) ) ) | 
						
							| 107 | 102 106 | breqtrrd | ⊢ ( ( 𝜑  ∧  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  →  ( abs ‘ ( 𝐺 ‘ 𝐵 ) )  ≤  1 ) | 
						
							| 108 | 16 17 107 | lensymd | ⊢ ( ( 𝜑  ∧  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) )  →  ¬  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) ) | 
						
							| 109 | 11 108 | pm2.65da | ⊢ ( 𝜑  →  ¬  1  <  ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) ) | 
						
							| 110 | 9 10 109 | nltled | ⊢ ( 𝜑  →  ( abs ‘ ( 𝐺 ‘ 𝐵 ) )  ≤  1 ) |