Metamath Proof Explorer


Theorem imo72b2

Description: IMO 1972 B2. (14th International Mathemahics Olympiad in Poland, problem B2). (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypotheses imo72b2.1 φ F :
imo72b2.2 φ G :
imo72b2.4 φ B
imo72b2.5 φ u v F u + v + F u v = 2 F u G v
imo72b2.6 φ y F y 1
imo72b2.7 φ x F x 0
Assertion imo72b2 φ G B 1

Proof

Step Hyp Ref Expression
1 imo72b2.1 φ F :
2 imo72b2.2 φ G :
3 imo72b2.4 φ B
4 imo72b2.5 φ u v F u + v + F u v = 2 F u G v
5 imo72b2.6 φ y F y 1
6 imo72b2.7 φ x F x 0
7 2 3 ffvelrnd φ G B
8 7 recnd φ G B
9 8 abscld φ G B
10 1red φ 1
11 simpr φ 1 < G B 1 < G B
12 2 adantr φ 1 < G B G :
13 3 adantr φ 1 < G B B
14 12 13 ffvelrnd φ 1 < G B G B
15 14 recnd φ 1 < G B G B
16 15 abscld φ 1 < G B G B
17 10 adantr φ 1 < G B 1
18 ax-resscn
19 imaco abs F = abs F
20 19 eqcomi abs F = abs F
21 imassrn abs F ran abs F
22 21 a1i φ 1 < G B abs F ran abs F
23 1 adantr φ 1 < G B F :
24 absf abs :
25 24 a1i φ 1 < G B abs :
26 18 a1i φ 1 < G B
27 25 26 fssresd φ 1 < G B abs :
28 23 27 fco2d φ 1 < G B abs F :
29 28 frnd φ 1 < G B ran abs F
30 22 29 sstrd φ 1 < G B abs F
31 20 30 eqsstrid φ 1 < G B abs F
32 0re 0
33 32 ne0ii
34 33 a1i φ 1 < G B
35 34 28 wnefimgd φ 1 < G B abs F
36 35 necomd φ 1 < G B abs F
37 20 a1i φ 1 < G B abs F = abs F
38 36 37 neeqtrrd φ 1 < G B abs F
39 38 necomd φ 1 < G B abs F
40 simpr φ 1 < G B c = 1 c = 1
41 40 breq2d φ 1 < G B c = 1 t c t 1
42 41 ralbidv φ 1 < G B c = 1 t abs F t c t abs F t 1
43 1 5 extoimad φ t abs F t 1
44 43 adantr φ 1 < G B t abs F t 1
45 17 42 44 rspcedvd φ 1 < G B c t abs F t c
46 31 39 45 suprcld φ 1 < G B sup abs F <
47 18 46 sseldi φ 1 < G B sup abs F <
48 18 16 sseldi φ 1 < G B G B
49 47 48 mulcomd φ 1 < G B sup abs F < G B = G B sup abs F <
50 32 a1i φ 1 < G B 0
51 0lt1 0 < 1
52 51 a1i φ 1 < G B 0 < 1
53 50 17 16 52 11 lttrd φ 1 < G B 0 < G B
54 53 gt0ne0d φ 1 < G B G B 0
55 46 16 54 redivcld φ 1 < G B sup abs F < G B
56 23 adantr φ 1 < G B u F :
57 12 adantr φ 1 < G B u G :
58 simpr φ 1 < G B u u
59 13 adantr φ 1 < G B u B
60 simpr φ v = B v = B
61 60 oveq2d φ v = B u + v = u + B
62 61 fveq2d φ v = B F u + v = F u + B
63 60 oveq2d φ v = B u v = u B
64 63 fveq2d φ v = B F u v = F u B
65 62 64 oveq12d φ v = B F u + v + F u v = F u + B + F u B
66 60 fveq2d φ v = B G v = G B
67 66 oveq2d φ v = B F u G v = F u G B
68 67 oveq2d φ v = B 2 F u G v = 2 F u G B
69 65 68 eqeq12d φ v = B F u + v + F u v = 2 F u G v F u + B + F u B = 2 F u G B
70 69 ralbidv φ v = B u F u + v + F u v = 2 F u G v u F u + B + F u B = 2 F u G B
71 ralcom u v F u + v + F u v = 2 F u G v v u F u + v + F u v = 2 F u G v
72 71 biimpi u v F u + v + F u v = 2 F u G v v u F u + v + F u v = 2 F u G v
73 72 a1i φ u v F u + v + F u v = 2 F u G v v u F u + v + F u v = 2 F u G v
74 73 imp φ u v F u + v + F u v = 2 F u G v v u F u + v + F u v = 2 F u G v
75 4 74 mpdan φ v u F u + v + F u v = 2 F u G v
76 70 3 75 rspcdvinvd φ u F u + B + F u B = 2 F u G B
77 76 r19.21bi φ u F u + B + F u B = 2 F u G B
78 77 adantlr φ 1 < G B u F u + B + F u B = 2 F u G B
79 5 ad2antrr φ 1 < G B u y F y 1
80 56 57 58 59 78 79 imo72b2lem0 φ 1 < G B u F u G B sup abs F <
81 0xr 0 *
82 81 a1i φ 1 < G B u 0 *
83 1xr 1 *
84 83 a1i φ 1 < G B u 1 *
85 16 adantr φ 1 < G B u G B
86 85 rexrd φ 1 < G B u G B *
87 51 a1i φ 1 < G B u 0 < 1
88 simplr φ 1 < G B u 1 < G B
89 82 84 86 87 88 xrlttrd φ 1 < G B u 0 < G B
90 23 ffvelrnda φ 1 < G B u F u
91 90 recnd φ 1 < G B u F u
92 91 abscld φ 1 < G B u F u
93 46 adantr φ 1 < G B u sup abs F <
94 80 89 85 92 93 lemuldiv3d φ 1 < G B u F u sup abs F < G B
95 94 ralrimiva φ 1 < G B u F u sup abs F < G B
96 23 55 95 imo72b2lem2 φ 1 < G B sup abs F < sup abs F < G B
97 96 53 16 46 46 lemuldiv4d φ 1 < G B sup abs F < G B sup abs F <
98 49 97 eqbrtrrd φ 1 < G B G B sup abs F < sup abs F <
99 6 adantr φ 1 < G B x F x 0
100 5 adantr φ 1 < G B y F y 1
101 23 99 100 imo72b2lem1 φ 1 < G B 0 < sup abs F <
102 98 101 46 16 46 lemuldiv3d φ 1 < G B G B sup abs F < sup abs F <
103 26 46 sseldd φ 1 < G B sup abs F <
104 101 gt0ne0d φ 1 < G B sup abs F < 0
105 103 104 dividd φ 1 < G B sup abs F < sup abs F < = 1
106 105 eqcomd φ 1 < G B 1 = sup abs F < sup abs F <
107 102 106 breqtrrd φ 1 < G B G B 1
108 16 17 107 lensymd φ 1 < G B ¬ 1 < G B
109 11 108 pm2.65da φ ¬ 1 < G B
110 9 10 109 nltled φ G B 1