Metamath Proof Explorer


Theorem imo72b2lem1

Description: Lemma for imo72b2 . (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypotheses imo72b2lem1.1 φ F :
imo72b2lem1.7 φ x F x 0
imo72b2lem1.6 φ y F y 1
Assertion imo72b2lem1 φ 0 < sup abs F <

Proof

Step Hyp Ref Expression
1 imo72b2lem1.1 φ F :
2 imo72b2lem1.7 φ x F x 0
3 imo72b2lem1.6 φ y F y 1
4 imaco abs F = abs F
5 imassrn abs F ran abs F
6 absf abs :
7 6 a1i φ abs :
8 ax-resscn
9 8 a1i φ
10 7 9 fssresd φ abs :
11 1 10 fco2d φ abs F :
12 11 frnd φ ran abs F
13 5 12 sstrid φ abs F
14 4 13 eqsstrrid φ abs F
15 0re 0
16 15 ne0ii
17 16 a1i φ
18 17 11 wnefimgd φ abs F
19 4 18 eqnetrrid φ abs F
20 1red φ 1
21 simpr φ c = 1 c = 1
22 21 breq2d φ c = 1 t c t 1
23 22 ralbidv φ c = 1 t abs F t c t abs F t 1
24 1 3 extoimad φ t abs F t 1
25 20 23 24 rspcedvd φ c t abs F t c
26 0red φ 0
27 1 adantr φ x F x 0 F :
28 simprl φ x F x 0 x
29 27 28 fvco3d φ x F x 0 abs F x = F x
30 11 funfvima2d φ x abs F x abs F
31 30 adantrr φ x F x 0 abs F x abs F
32 31 4 eleqtrdi φ x F x 0 abs F x abs F
33 29 32 eqeltrrd φ x F x 0 F x abs F
34 simpr φ x F x 0 z = F x z = F x
35 34 breq2d φ x F x 0 z = F x 0 < z 0 < F x
36 1 ffvelrnda φ x F x
37 36 adantrr φ x F x 0 F x
38 37 recnd φ x F x 0 F x
39 simprr φ x F x 0 F x 0
40 38 39 absrpcld φ x F x 0 F x +
41 40 rpgt0d φ x F x 0 0 < F x
42 33 35 41 rspcedvd φ x F x 0 z abs F 0 < z
43 2 42 rexlimddv φ z abs F 0 < z
44 14 19 25 26 43 suprlubrd φ 0 < sup abs F <