| Step | Hyp | Ref | Expression | 
						
							| 1 |  | imo72b2lem1.1 |  |-  ( ph -> F : RR --> RR ) | 
						
							| 2 |  | imo72b2lem1.7 |  |-  ( ph -> E. x e. RR ( F ` x ) =/= 0 ) | 
						
							| 3 |  | imo72b2lem1.6 |  |-  ( ph -> A. y e. RR ( abs ` ( F ` y ) ) <_ 1 ) | 
						
							| 4 |  | imaco |  |-  ( ( abs o. F ) " RR ) = ( abs " ( F " RR ) ) | 
						
							| 5 |  | imassrn |  |-  ( ( abs o. F ) " RR ) C_ ran ( abs o. F ) | 
						
							| 6 |  | absf |  |-  abs : CC --> RR | 
						
							| 7 | 6 | a1i |  |-  ( ph -> abs : CC --> RR ) | 
						
							| 8 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 9 | 8 | a1i |  |-  ( ph -> RR C_ CC ) | 
						
							| 10 | 7 9 | fssresd |  |-  ( ph -> ( abs |` RR ) : RR --> RR ) | 
						
							| 11 | 1 10 | fco2d |  |-  ( ph -> ( abs o. F ) : RR --> RR ) | 
						
							| 12 | 11 | frnd |  |-  ( ph -> ran ( abs o. F ) C_ RR ) | 
						
							| 13 | 5 12 | sstrid |  |-  ( ph -> ( ( abs o. F ) " RR ) C_ RR ) | 
						
							| 14 | 4 13 | eqsstrrid |  |-  ( ph -> ( abs " ( F " RR ) ) C_ RR ) | 
						
							| 15 |  | 0re |  |-  0 e. RR | 
						
							| 16 | 15 | ne0ii |  |-  RR =/= (/) | 
						
							| 17 | 16 | a1i |  |-  ( ph -> RR =/= (/) ) | 
						
							| 18 | 17 11 | wnefimgd |  |-  ( ph -> ( ( abs o. F ) " RR ) =/= (/) ) | 
						
							| 19 | 4 18 | eqnetrrid |  |-  ( ph -> ( abs " ( F " RR ) ) =/= (/) ) | 
						
							| 20 |  | 1red |  |-  ( ph -> 1 e. RR ) | 
						
							| 21 |  | simpr |  |-  ( ( ph /\ c = 1 ) -> c = 1 ) | 
						
							| 22 | 21 | breq2d |  |-  ( ( ph /\ c = 1 ) -> ( t <_ c <-> t <_ 1 ) ) | 
						
							| 23 | 22 | ralbidv |  |-  ( ( ph /\ c = 1 ) -> ( A. t e. ( abs " ( F " RR ) ) t <_ c <-> A. t e. ( abs " ( F " RR ) ) t <_ 1 ) ) | 
						
							| 24 | 1 3 | extoimad |  |-  ( ph -> A. t e. ( abs " ( F " RR ) ) t <_ 1 ) | 
						
							| 25 | 20 23 24 | rspcedvd |  |-  ( ph -> E. c e. RR A. t e. ( abs " ( F " RR ) ) t <_ c ) | 
						
							| 26 |  | 0red |  |-  ( ph -> 0 e. RR ) | 
						
							| 27 | 1 | adantr |  |-  ( ( ph /\ ( x e. RR /\ ( F ` x ) =/= 0 ) ) -> F : RR --> RR ) | 
						
							| 28 |  | simprl |  |-  ( ( ph /\ ( x e. RR /\ ( F ` x ) =/= 0 ) ) -> x e. RR ) | 
						
							| 29 | 27 28 | fvco3d |  |-  ( ( ph /\ ( x e. RR /\ ( F ` x ) =/= 0 ) ) -> ( ( abs o. F ) ` x ) = ( abs ` ( F ` x ) ) ) | 
						
							| 30 | 11 | funfvima2d |  |-  ( ( ph /\ x e. RR ) -> ( ( abs o. F ) ` x ) e. ( ( abs o. F ) " RR ) ) | 
						
							| 31 | 30 | adantrr |  |-  ( ( ph /\ ( x e. RR /\ ( F ` x ) =/= 0 ) ) -> ( ( abs o. F ) ` x ) e. ( ( abs o. F ) " RR ) ) | 
						
							| 32 | 31 4 | eleqtrdi |  |-  ( ( ph /\ ( x e. RR /\ ( F ` x ) =/= 0 ) ) -> ( ( abs o. F ) ` x ) e. ( abs " ( F " RR ) ) ) | 
						
							| 33 | 29 32 | eqeltrrd |  |-  ( ( ph /\ ( x e. RR /\ ( F ` x ) =/= 0 ) ) -> ( abs ` ( F ` x ) ) e. ( abs " ( F " RR ) ) ) | 
						
							| 34 |  | simpr |  |-  ( ( ( ph /\ ( x e. RR /\ ( F ` x ) =/= 0 ) ) /\ z = ( abs ` ( F ` x ) ) ) -> z = ( abs ` ( F ` x ) ) ) | 
						
							| 35 | 34 | breq2d |  |-  ( ( ( ph /\ ( x e. RR /\ ( F ` x ) =/= 0 ) ) /\ z = ( abs ` ( F ` x ) ) ) -> ( 0 < z <-> 0 < ( abs ` ( F ` x ) ) ) ) | 
						
							| 36 | 1 | ffvelcdmda |  |-  ( ( ph /\ x e. RR ) -> ( F ` x ) e. RR ) | 
						
							| 37 | 36 | adantrr |  |-  ( ( ph /\ ( x e. RR /\ ( F ` x ) =/= 0 ) ) -> ( F ` x ) e. RR ) | 
						
							| 38 | 37 | recnd |  |-  ( ( ph /\ ( x e. RR /\ ( F ` x ) =/= 0 ) ) -> ( F ` x ) e. CC ) | 
						
							| 39 |  | simprr |  |-  ( ( ph /\ ( x e. RR /\ ( F ` x ) =/= 0 ) ) -> ( F ` x ) =/= 0 ) | 
						
							| 40 | 38 39 | absrpcld |  |-  ( ( ph /\ ( x e. RR /\ ( F ` x ) =/= 0 ) ) -> ( abs ` ( F ` x ) ) e. RR+ ) | 
						
							| 41 | 40 | rpgt0d |  |-  ( ( ph /\ ( x e. RR /\ ( F ` x ) =/= 0 ) ) -> 0 < ( abs ` ( F ` x ) ) ) | 
						
							| 42 | 33 35 41 | rspcedvd |  |-  ( ( ph /\ ( x e. RR /\ ( F ` x ) =/= 0 ) ) -> E. z e. ( abs " ( F " RR ) ) 0 < z ) | 
						
							| 43 | 2 42 | rexlimddv |  |-  ( ph -> E. z e. ( abs " ( F " RR ) ) 0 < z ) | 
						
							| 44 | 14 19 25 26 43 | suprlubrd |  |-  ( ph -> 0 < sup ( ( abs " ( F " RR ) ) , RR , < ) ) |