Step |
Hyp |
Ref |
Expression |
1 |
|
imo72b2lem1.1 |
|- ( ph -> F : RR --> RR ) |
2 |
|
imo72b2lem1.7 |
|- ( ph -> E. x e. RR ( F ` x ) =/= 0 ) |
3 |
|
imo72b2lem1.6 |
|- ( ph -> A. y e. RR ( abs ` ( F ` y ) ) <_ 1 ) |
4 |
|
imaco |
|- ( ( abs o. F ) " RR ) = ( abs " ( F " RR ) ) |
5 |
|
imassrn |
|- ( ( abs o. F ) " RR ) C_ ran ( abs o. F ) |
6 |
|
absf |
|- abs : CC --> RR |
7 |
6
|
a1i |
|- ( ph -> abs : CC --> RR ) |
8 |
|
ax-resscn |
|- RR C_ CC |
9 |
8
|
a1i |
|- ( ph -> RR C_ CC ) |
10 |
7 9
|
fssresd |
|- ( ph -> ( abs |` RR ) : RR --> RR ) |
11 |
1 10
|
fco2d |
|- ( ph -> ( abs o. F ) : RR --> RR ) |
12 |
11
|
frnd |
|- ( ph -> ran ( abs o. F ) C_ RR ) |
13 |
5 12
|
sstrid |
|- ( ph -> ( ( abs o. F ) " RR ) C_ RR ) |
14 |
4 13
|
eqsstrrid |
|- ( ph -> ( abs " ( F " RR ) ) C_ RR ) |
15 |
|
0re |
|- 0 e. RR |
16 |
15
|
ne0ii |
|- RR =/= (/) |
17 |
16
|
a1i |
|- ( ph -> RR =/= (/) ) |
18 |
17 11
|
wnefimgd |
|- ( ph -> ( ( abs o. F ) " RR ) =/= (/) ) |
19 |
4 18
|
eqnetrrid |
|- ( ph -> ( abs " ( F " RR ) ) =/= (/) ) |
20 |
|
1red |
|- ( ph -> 1 e. RR ) |
21 |
|
simpr |
|- ( ( ph /\ c = 1 ) -> c = 1 ) |
22 |
21
|
breq2d |
|- ( ( ph /\ c = 1 ) -> ( t <_ c <-> t <_ 1 ) ) |
23 |
22
|
ralbidv |
|- ( ( ph /\ c = 1 ) -> ( A. t e. ( abs " ( F " RR ) ) t <_ c <-> A. t e. ( abs " ( F " RR ) ) t <_ 1 ) ) |
24 |
1 3
|
extoimad |
|- ( ph -> A. t e. ( abs " ( F " RR ) ) t <_ 1 ) |
25 |
20 23 24
|
rspcedvd |
|- ( ph -> E. c e. RR A. t e. ( abs " ( F " RR ) ) t <_ c ) |
26 |
|
0red |
|- ( ph -> 0 e. RR ) |
27 |
1
|
adantr |
|- ( ( ph /\ ( x e. RR /\ ( F ` x ) =/= 0 ) ) -> F : RR --> RR ) |
28 |
|
simprl |
|- ( ( ph /\ ( x e. RR /\ ( F ` x ) =/= 0 ) ) -> x e. RR ) |
29 |
27 28
|
fvco3d |
|- ( ( ph /\ ( x e. RR /\ ( F ` x ) =/= 0 ) ) -> ( ( abs o. F ) ` x ) = ( abs ` ( F ` x ) ) ) |
30 |
11
|
funfvima2d |
|- ( ( ph /\ x e. RR ) -> ( ( abs o. F ) ` x ) e. ( ( abs o. F ) " RR ) ) |
31 |
30
|
adantrr |
|- ( ( ph /\ ( x e. RR /\ ( F ` x ) =/= 0 ) ) -> ( ( abs o. F ) ` x ) e. ( ( abs o. F ) " RR ) ) |
32 |
31 4
|
eleqtrdi |
|- ( ( ph /\ ( x e. RR /\ ( F ` x ) =/= 0 ) ) -> ( ( abs o. F ) ` x ) e. ( abs " ( F " RR ) ) ) |
33 |
29 32
|
eqeltrrd |
|- ( ( ph /\ ( x e. RR /\ ( F ` x ) =/= 0 ) ) -> ( abs ` ( F ` x ) ) e. ( abs " ( F " RR ) ) ) |
34 |
|
simpr |
|- ( ( ( ph /\ ( x e. RR /\ ( F ` x ) =/= 0 ) ) /\ z = ( abs ` ( F ` x ) ) ) -> z = ( abs ` ( F ` x ) ) ) |
35 |
34
|
breq2d |
|- ( ( ( ph /\ ( x e. RR /\ ( F ` x ) =/= 0 ) ) /\ z = ( abs ` ( F ` x ) ) ) -> ( 0 < z <-> 0 < ( abs ` ( F ` x ) ) ) ) |
36 |
1
|
ffvelrnda |
|- ( ( ph /\ x e. RR ) -> ( F ` x ) e. RR ) |
37 |
36
|
adantrr |
|- ( ( ph /\ ( x e. RR /\ ( F ` x ) =/= 0 ) ) -> ( F ` x ) e. RR ) |
38 |
37
|
recnd |
|- ( ( ph /\ ( x e. RR /\ ( F ` x ) =/= 0 ) ) -> ( F ` x ) e. CC ) |
39 |
|
simprr |
|- ( ( ph /\ ( x e. RR /\ ( F ` x ) =/= 0 ) ) -> ( F ` x ) =/= 0 ) |
40 |
38 39
|
absrpcld |
|- ( ( ph /\ ( x e. RR /\ ( F ` x ) =/= 0 ) ) -> ( abs ` ( F ` x ) ) e. RR+ ) |
41 |
40
|
rpgt0d |
|- ( ( ph /\ ( x e. RR /\ ( F ` x ) =/= 0 ) ) -> 0 < ( abs ` ( F ` x ) ) ) |
42 |
33 35 41
|
rspcedvd |
|- ( ( ph /\ ( x e. RR /\ ( F ` x ) =/= 0 ) ) -> E. z e. ( abs " ( F " RR ) ) 0 < z ) |
43 |
2 42
|
rexlimddv |
|- ( ph -> E. z e. ( abs " ( F " RR ) ) 0 < z ) |
44 |
14 19 25 26 43
|
suprlubrd |
|- ( ph -> 0 < sup ( ( abs " ( F " RR ) ) , RR , < ) ) |