Metamath Proof Explorer


Theorem lemuldiv3d

Description: 'Less than or equal to' relationship between division and multiplication. (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypotheses lemuldiv3d.1
|- ( ph -> ( B x. A ) <_ C )
lemuldiv3d.2
|- ( ph -> 0 < A )
lemuldiv3d.3
|- ( ph -> A e. RR )
lemuldiv3d.4
|- ( ph -> B e. RR )
lemuldiv3d.5
|- ( ph -> C e. RR )
Assertion lemuldiv3d
|- ( ph -> B <_ ( C / A ) )

Proof

Step Hyp Ref Expression
1 lemuldiv3d.1
 |-  ( ph -> ( B x. A ) <_ C )
2 lemuldiv3d.2
 |-  ( ph -> 0 < A )
3 lemuldiv3d.3
 |-  ( ph -> A e. RR )
4 lemuldiv3d.4
 |-  ( ph -> B e. RR )
5 lemuldiv3d.5
 |-  ( ph -> C e. RR )
6 lemuldiv
 |-  ( ( B e. RR /\ C e. RR /\ ( A e. RR /\ 0 < A ) ) -> ( ( B x. A ) <_ C <-> B <_ ( C / A ) ) )
7 4 5 3 2 6 syl112anc
 |-  ( ph -> ( ( B x. A ) <_ C <-> B <_ ( C / A ) ) )
8 1 7 mpbid
 |-  ( ph -> B <_ ( C / A ) )