Description: 'Less than or equal to' relationship between division and multiplication. (Contributed by Stanislas Polu, 9-Mar-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lemuldiv4d.1 | |- ( ph -> B <_ ( C / A ) ) |
|
lemuldiv4d.2 | |- ( ph -> 0 < A ) |
||
lemuldiv4d.3 | |- ( ph -> A e. RR ) |
||
lemuldiv4d.4 | |- ( ph -> B e. RR ) |
||
lemuldiv4d.5 | |- ( ph -> C e. RR ) |
||
Assertion | lemuldiv4d | |- ( ph -> ( B x. A ) <_ C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lemuldiv4d.1 | |- ( ph -> B <_ ( C / A ) ) |
|
2 | lemuldiv4d.2 | |- ( ph -> 0 < A ) |
|
3 | lemuldiv4d.3 | |- ( ph -> A e. RR ) |
|
4 | lemuldiv4d.4 | |- ( ph -> B e. RR ) |
|
5 | lemuldiv4d.5 | |- ( ph -> C e. RR ) |
|
6 | lemuldiv | |- ( ( B e. RR /\ C e. RR /\ ( A e. RR /\ 0 < A ) ) -> ( ( B x. A ) <_ C <-> B <_ ( C / A ) ) ) |
|
7 | 4 5 3 2 6 | syl112anc | |- ( ph -> ( ( B x. A ) <_ C <-> B <_ ( C / A ) ) ) |
8 | 7 | bicomd | |- ( ph -> ( B <_ ( C / A ) <-> ( B x. A ) <_ C ) ) |
9 | 1 8 | mpbid | |- ( ph -> ( B x. A ) <_ C ) |