Metamath Proof Explorer


Theorem lemuldiv4d

Description: 'Less than or equal to' relationship between division and multiplication. (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypotheses lemuldiv4d.1
|- ( ph -> B <_ ( C / A ) )
lemuldiv4d.2
|- ( ph -> 0 < A )
lemuldiv4d.3
|- ( ph -> A e. RR )
lemuldiv4d.4
|- ( ph -> B e. RR )
lemuldiv4d.5
|- ( ph -> C e. RR )
Assertion lemuldiv4d
|- ( ph -> ( B x. A ) <_ C )

Proof

Step Hyp Ref Expression
1 lemuldiv4d.1
 |-  ( ph -> B <_ ( C / A ) )
2 lemuldiv4d.2
 |-  ( ph -> 0 < A )
3 lemuldiv4d.3
 |-  ( ph -> A e. RR )
4 lemuldiv4d.4
 |-  ( ph -> B e. RR )
5 lemuldiv4d.5
 |-  ( ph -> C e. RR )
6 lemuldiv
 |-  ( ( B e. RR /\ C e. RR /\ ( A e. RR /\ 0 < A ) ) -> ( ( B x. A ) <_ C <-> B <_ ( C / A ) ) )
7 4 5 3 2 6 syl112anc
 |-  ( ph -> ( ( B x. A ) <_ C <-> B <_ ( C / A ) ) )
8 7 bicomd
 |-  ( ph -> ( B <_ ( C / A ) <-> ( B x. A ) <_ C ) )
9 1 8 mpbid
 |-  ( ph -> ( B x. A ) <_ C )