Description: 'Less than or equal to' relationship between division and multiplication. (Contributed by Stanislas Polu, 9-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lemuldiv4d.1 | ⊢ ( 𝜑 → 𝐵 ≤ ( 𝐶 / 𝐴 ) ) | |
| lemuldiv4d.2 | ⊢ ( 𝜑 → 0 < 𝐴 ) | ||
| lemuldiv4d.3 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | ||
| lemuldiv4d.4 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| lemuldiv4d.5 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | ||
| Assertion | lemuldiv4d | ⊢ ( 𝜑 → ( 𝐵 · 𝐴 ) ≤ 𝐶 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | lemuldiv4d.1 | ⊢ ( 𝜑 → 𝐵 ≤ ( 𝐶 / 𝐴 ) ) | |
| 2 | lemuldiv4d.2 | ⊢ ( 𝜑 → 0 < 𝐴 ) | |
| 3 | lemuldiv4d.3 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 4 | lemuldiv4d.4 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 5 | lemuldiv4d.5 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | |
| 6 | lemuldiv | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) → ( ( 𝐵 · 𝐴 ) ≤ 𝐶 ↔ 𝐵 ≤ ( 𝐶 / 𝐴 ) ) ) | |
| 7 | 4 5 3 2 6 | syl112anc | ⊢ ( 𝜑 → ( ( 𝐵 · 𝐴 ) ≤ 𝐶 ↔ 𝐵 ≤ ( 𝐶 / 𝐴 ) ) ) | 
| 8 | 7 | bicomd | ⊢ ( 𝜑 → ( 𝐵 ≤ ( 𝐶 / 𝐴 ) ↔ ( 𝐵 · 𝐴 ) ≤ 𝐶 ) ) | 
| 9 | 1 8 | mpbid | ⊢ ( 𝜑 → ( 𝐵 · 𝐴 ) ≤ 𝐶 ) |