Description: 'Less than or equal to' relationship between division and multiplication. (Contributed by Stanislas Polu, 9-Mar-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lemuldiv4d.1 | ⊢ ( 𝜑 → 𝐵 ≤ ( 𝐶 / 𝐴 ) ) | |
lemuldiv4d.2 | ⊢ ( 𝜑 → 0 < 𝐴 ) | ||
lemuldiv4d.3 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | ||
lemuldiv4d.4 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
lemuldiv4d.5 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | ||
Assertion | lemuldiv4d | ⊢ ( 𝜑 → ( 𝐵 · 𝐴 ) ≤ 𝐶 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lemuldiv4d.1 | ⊢ ( 𝜑 → 𝐵 ≤ ( 𝐶 / 𝐴 ) ) | |
2 | lemuldiv4d.2 | ⊢ ( 𝜑 → 0 < 𝐴 ) | |
3 | lemuldiv4d.3 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
4 | lemuldiv4d.4 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
5 | lemuldiv4d.5 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | |
6 | lemuldiv | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) → ( ( 𝐵 · 𝐴 ) ≤ 𝐶 ↔ 𝐵 ≤ ( 𝐶 / 𝐴 ) ) ) | |
7 | 4 5 3 2 6 | syl112anc | ⊢ ( 𝜑 → ( ( 𝐵 · 𝐴 ) ≤ 𝐶 ↔ 𝐵 ≤ ( 𝐶 / 𝐴 ) ) ) |
8 | 7 | bicomd | ⊢ ( 𝜑 → ( 𝐵 ≤ ( 𝐶 / 𝐴 ) ↔ ( 𝐵 · 𝐴 ) ≤ 𝐶 ) ) |
9 | 1 8 | mpbid | ⊢ ( 𝜑 → ( 𝐵 · 𝐴 ) ≤ 𝐶 ) |