Metamath Proof Explorer


Theorem lemuldiv4d

Description: 'Less than or equal to' relationship between division and multiplication. (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypotheses lemuldiv4d.1 φ B C A
lemuldiv4d.2 φ 0 < A
lemuldiv4d.3 φ A
lemuldiv4d.4 φ B
lemuldiv4d.5 φ C
Assertion lemuldiv4d φ B A C

Proof

Step Hyp Ref Expression
1 lemuldiv4d.1 φ B C A
2 lemuldiv4d.2 φ 0 < A
3 lemuldiv4d.3 φ A
4 lemuldiv4d.4 φ B
5 lemuldiv4d.5 φ C
6 lemuldiv B C A 0 < A B A C B C A
7 4 5 3 2 6 syl112anc φ B A C B C A
8 7 bicomd φ B C A B A C
9 1 8 mpbid φ B A C