Metamath Proof Explorer


Theorem lemuldiv4d

Description: 'Less than or equal to' relationship between division and multiplication. (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypotheses lemuldiv4d.1 φBCA
lemuldiv4d.2 φ0<A
lemuldiv4d.3 φA
lemuldiv4d.4 φB
lemuldiv4d.5 φC
Assertion lemuldiv4d φBAC

Proof

Step Hyp Ref Expression
1 lemuldiv4d.1 φBCA
2 lemuldiv4d.2 φ0<A
3 lemuldiv4d.3 φA
4 lemuldiv4d.4 φB
5 lemuldiv4d.5 φC
6 lemuldiv BCA0<ABACBCA
7 4 5 3 2 6 syl112anc φBACBCA
8 7 bicomd φBCABAC
9 1 8 mpbid φBAC