| Step | Hyp | Ref | Expression | 
						
							| 1 |  | imo72b2.1 |  |-  ( ph -> F : RR --> RR ) | 
						
							| 2 |  | imo72b2.2 |  |-  ( ph -> G : RR --> RR ) | 
						
							| 3 |  | imo72b2.4 |  |-  ( ph -> B e. RR ) | 
						
							| 4 |  | imo72b2.5 |  |-  ( ph -> A. u e. RR A. v e. RR ( ( F ` ( u + v ) ) + ( F ` ( u - v ) ) ) = ( 2 x. ( ( F ` u ) x. ( G ` v ) ) ) ) | 
						
							| 5 |  | imo72b2.6 |  |-  ( ph -> A. y e. RR ( abs ` ( F ` y ) ) <_ 1 ) | 
						
							| 6 |  | imo72b2.7 |  |-  ( ph -> E. x e. RR ( F ` x ) =/= 0 ) | 
						
							| 7 | 2 3 | ffvelcdmd |  |-  ( ph -> ( G ` B ) e. RR ) | 
						
							| 8 | 7 | recnd |  |-  ( ph -> ( G ` B ) e. CC ) | 
						
							| 9 | 8 | abscld |  |-  ( ph -> ( abs ` ( G ` B ) ) e. RR ) | 
						
							| 10 |  | 1red |  |-  ( ph -> 1 e. RR ) | 
						
							| 11 |  | simpr |  |-  ( ( ph /\ 1 < ( abs ` ( G ` B ) ) ) -> 1 < ( abs ` ( G ` B ) ) ) | 
						
							| 12 | 2 | adantr |  |-  ( ( ph /\ 1 < ( abs ` ( G ` B ) ) ) -> G : RR --> RR ) | 
						
							| 13 | 3 | adantr |  |-  ( ( ph /\ 1 < ( abs ` ( G ` B ) ) ) -> B e. RR ) | 
						
							| 14 | 12 13 | ffvelcdmd |  |-  ( ( ph /\ 1 < ( abs ` ( G ` B ) ) ) -> ( G ` B ) e. RR ) | 
						
							| 15 | 14 | recnd |  |-  ( ( ph /\ 1 < ( abs ` ( G ` B ) ) ) -> ( G ` B ) e. CC ) | 
						
							| 16 | 15 | abscld |  |-  ( ( ph /\ 1 < ( abs ` ( G ` B ) ) ) -> ( abs ` ( G ` B ) ) e. RR ) | 
						
							| 17 | 10 | adantr |  |-  ( ( ph /\ 1 < ( abs ` ( G ` B ) ) ) -> 1 e. RR ) | 
						
							| 18 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 19 |  | imaco |  |-  ( ( abs o. F ) " RR ) = ( abs " ( F " RR ) ) | 
						
							| 20 | 19 | eqcomi |  |-  ( abs " ( F " RR ) ) = ( ( abs o. F ) " RR ) | 
						
							| 21 |  | imassrn |  |-  ( ( abs o. F ) " RR ) C_ ran ( abs o. F ) | 
						
							| 22 | 21 | a1i |  |-  ( ( ph /\ 1 < ( abs ` ( G ` B ) ) ) -> ( ( abs o. F ) " RR ) C_ ran ( abs o. F ) ) | 
						
							| 23 | 1 | adantr |  |-  ( ( ph /\ 1 < ( abs ` ( G ` B ) ) ) -> F : RR --> RR ) | 
						
							| 24 |  | absf |  |-  abs : CC --> RR | 
						
							| 25 | 24 | a1i |  |-  ( ( ph /\ 1 < ( abs ` ( G ` B ) ) ) -> abs : CC --> RR ) | 
						
							| 26 | 18 | a1i |  |-  ( ( ph /\ 1 < ( abs ` ( G ` B ) ) ) -> RR C_ CC ) | 
						
							| 27 | 25 26 | fssresd |  |-  ( ( ph /\ 1 < ( abs ` ( G ` B ) ) ) -> ( abs |` RR ) : RR --> RR ) | 
						
							| 28 | 23 27 | fco2d |  |-  ( ( ph /\ 1 < ( abs ` ( G ` B ) ) ) -> ( abs o. F ) : RR --> RR ) | 
						
							| 29 | 28 | frnd |  |-  ( ( ph /\ 1 < ( abs ` ( G ` B ) ) ) -> ran ( abs o. F ) C_ RR ) | 
						
							| 30 | 22 29 | sstrd |  |-  ( ( ph /\ 1 < ( abs ` ( G ` B ) ) ) -> ( ( abs o. F ) " RR ) C_ RR ) | 
						
							| 31 | 20 30 | eqsstrid |  |-  ( ( ph /\ 1 < ( abs ` ( G ` B ) ) ) -> ( abs " ( F " RR ) ) C_ RR ) | 
						
							| 32 |  | 0re |  |-  0 e. RR | 
						
							| 33 | 32 | ne0ii |  |-  RR =/= (/) | 
						
							| 34 | 33 | a1i |  |-  ( ( ph /\ 1 < ( abs ` ( G ` B ) ) ) -> RR =/= (/) ) | 
						
							| 35 | 34 28 | wnefimgd |  |-  ( ( ph /\ 1 < ( abs ` ( G ` B ) ) ) -> ( ( abs o. F ) " RR ) =/= (/) ) | 
						
							| 36 | 35 | necomd |  |-  ( ( ph /\ 1 < ( abs ` ( G ` B ) ) ) -> (/) =/= ( ( abs o. F ) " RR ) ) | 
						
							| 37 | 20 | a1i |  |-  ( ( ph /\ 1 < ( abs ` ( G ` B ) ) ) -> ( abs " ( F " RR ) ) = ( ( abs o. F ) " RR ) ) | 
						
							| 38 | 36 37 | neeqtrrd |  |-  ( ( ph /\ 1 < ( abs ` ( G ` B ) ) ) -> (/) =/= ( abs " ( F " RR ) ) ) | 
						
							| 39 | 38 | necomd |  |-  ( ( ph /\ 1 < ( abs ` ( G ` B ) ) ) -> ( abs " ( F " RR ) ) =/= (/) ) | 
						
							| 40 |  | simpr |  |-  ( ( ( ph /\ 1 < ( abs ` ( G ` B ) ) ) /\ c = 1 ) -> c = 1 ) | 
						
							| 41 | 40 | breq2d |  |-  ( ( ( ph /\ 1 < ( abs ` ( G ` B ) ) ) /\ c = 1 ) -> ( t <_ c <-> t <_ 1 ) ) | 
						
							| 42 | 41 | ralbidv |  |-  ( ( ( ph /\ 1 < ( abs ` ( G ` B ) ) ) /\ c = 1 ) -> ( A. t e. ( abs " ( F " RR ) ) t <_ c <-> A. t e. ( abs " ( F " RR ) ) t <_ 1 ) ) | 
						
							| 43 | 1 5 | extoimad |  |-  ( ph -> A. t e. ( abs " ( F " RR ) ) t <_ 1 ) | 
						
							| 44 | 43 | adantr |  |-  ( ( ph /\ 1 < ( abs ` ( G ` B ) ) ) -> A. t e. ( abs " ( F " RR ) ) t <_ 1 ) | 
						
							| 45 | 17 42 44 | rspcedvd |  |-  ( ( ph /\ 1 < ( abs ` ( G ` B ) ) ) -> E. c e. RR A. t e. ( abs " ( F " RR ) ) t <_ c ) | 
						
							| 46 | 31 39 45 | suprcld |  |-  ( ( ph /\ 1 < ( abs ` ( G ` B ) ) ) -> sup ( ( abs " ( F " RR ) ) , RR , < ) e. RR ) | 
						
							| 47 | 18 46 | sselid |  |-  ( ( ph /\ 1 < ( abs ` ( G ` B ) ) ) -> sup ( ( abs " ( F " RR ) ) , RR , < ) e. CC ) | 
						
							| 48 | 18 16 | sselid |  |-  ( ( ph /\ 1 < ( abs ` ( G ` B ) ) ) -> ( abs ` ( G ` B ) ) e. CC ) | 
						
							| 49 | 47 48 | mulcomd |  |-  ( ( ph /\ 1 < ( abs ` ( G ` B ) ) ) -> ( sup ( ( abs " ( F " RR ) ) , RR , < ) x. ( abs ` ( G ` B ) ) ) = ( ( abs ` ( G ` B ) ) x. sup ( ( abs " ( F " RR ) ) , RR , < ) ) ) | 
						
							| 50 | 32 | a1i |  |-  ( ( ph /\ 1 < ( abs ` ( G ` B ) ) ) -> 0 e. RR ) | 
						
							| 51 |  | 0lt1 |  |-  0 < 1 | 
						
							| 52 | 51 | a1i |  |-  ( ( ph /\ 1 < ( abs ` ( G ` B ) ) ) -> 0 < 1 ) | 
						
							| 53 | 50 17 16 52 11 | lttrd |  |-  ( ( ph /\ 1 < ( abs ` ( G ` B ) ) ) -> 0 < ( abs ` ( G ` B ) ) ) | 
						
							| 54 | 53 | gt0ne0d |  |-  ( ( ph /\ 1 < ( abs ` ( G ` B ) ) ) -> ( abs ` ( G ` B ) ) =/= 0 ) | 
						
							| 55 | 46 16 54 | redivcld |  |-  ( ( ph /\ 1 < ( abs ` ( G ` B ) ) ) -> ( sup ( ( abs " ( F " RR ) ) , RR , < ) / ( abs ` ( G ` B ) ) ) e. RR ) | 
						
							| 56 | 23 | adantr |  |-  ( ( ( ph /\ 1 < ( abs ` ( G ` B ) ) ) /\ u e. RR ) -> F : RR --> RR ) | 
						
							| 57 | 12 | adantr |  |-  ( ( ( ph /\ 1 < ( abs ` ( G ` B ) ) ) /\ u e. RR ) -> G : RR --> RR ) | 
						
							| 58 |  | simpr |  |-  ( ( ( ph /\ 1 < ( abs ` ( G ` B ) ) ) /\ u e. RR ) -> u e. RR ) | 
						
							| 59 | 13 | adantr |  |-  ( ( ( ph /\ 1 < ( abs ` ( G ` B ) ) ) /\ u e. RR ) -> B e. RR ) | 
						
							| 60 |  | simpr |  |-  ( ( ph /\ v = B ) -> v = B ) | 
						
							| 61 | 60 | oveq2d |  |-  ( ( ph /\ v = B ) -> ( u + v ) = ( u + B ) ) | 
						
							| 62 | 61 | fveq2d |  |-  ( ( ph /\ v = B ) -> ( F ` ( u + v ) ) = ( F ` ( u + B ) ) ) | 
						
							| 63 | 60 | oveq2d |  |-  ( ( ph /\ v = B ) -> ( u - v ) = ( u - B ) ) | 
						
							| 64 | 63 | fveq2d |  |-  ( ( ph /\ v = B ) -> ( F ` ( u - v ) ) = ( F ` ( u - B ) ) ) | 
						
							| 65 | 62 64 | oveq12d |  |-  ( ( ph /\ v = B ) -> ( ( F ` ( u + v ) ) + ( F ` ( u - v ) ) ) = ( ( F ` ( u + B ) ) + ( F ` ( u - B ) ) ) ) | 
						
							| 66 | 60 | fveq2d |  |-  ( ( ph /\ v = B ) -> ( G ` v ) = ( G ` B ) ) | 
						
							| 67 | 66 | oveq2d |  |-  ( ( ph /\ v = B ) -> ( ( F ` u ) x. ( G ` v ) ) = ( ( F ` u ) x. ( G ` B ) ) ) | 
						
							| 68 | 67 | oveq2d |  |-  ( ( ph /\ v = B ) -> ( 2 x. ( ( F ` u ) x. ( G ` v ) ) ) = ( 2 x. ( ( F ` u ) x. ( G ` B ) ) ) ) | 
						
							| 69 | 65 68 | eqeq12d |  |-  ( ( ph /\ v = B ) -> ( ( ( F ` ( u + v ) ) + ( F ` ( u - v ) ) ) = ( 2 x. ( ( F ` u ) x. ( G ` v ) ) ) <-> ( ( F ` ( u + B ) ) + ( F ` ( u - B ) ) ) = ( 2 x. ( ( F ` u ) x. ( G ` B ) ) ) ) ) | 
						
							| 70 | 69 | ralbidv |  |-  ( ( ph /\ v = B ) -> ( A. u e. RR ( ( F ` ( u + v ) ) + ( F ` ( u - v ) ) ) = ( 2 x. ( ( F ` u ) x. ( G ` v ) ) ) <-> A. u e. RR ( ( F ` ( u + B ) ) + ( F ` ( u - B ) ) ) = ( 2 x. ( ( F ` u ) x. ( G ` B ) ) ) ) ) | 
						
							| 71 |  | ralcom |  |-  ( A. u e. RR A. v e. RR ( ( F ` ( u + v ) ) + ( F ` ( u - v ) ) ) = ( 2 x. ( ( F ` u ) x. ( G ` v ) ) ) <-> A. v e. RR A. u e. RR ( ( F ` ( u + v ) ) + ( F ` ( u - v ) ) ) = ( 2 x. ( ( F ` u ) x. ( G ` v ) ) ) ) | 
						
							| 72 | 71 | biimpi |  |-  ( A. u e. RR A. v e. RR ( ( F ` ( u + v ) ) + ( F ` ( u - v ) ) ) = ( 2 x. ( ( F ` u ) x. ( G ` v ) ) ) -> A. v e. RR A. u e. RR ( ( F ` ( u + v ) ) + ( F ` ( u - v ) ) ) = ( 2 x. ( ( F ` u ) x. ( G ` v ) ) ) ) | 
						
							| 73 | 72 | a1i |  |-  ( ph -> ( A. u e. RR A. v e. RR ( ( F ` ( u + v ) ) + ( F ` ( u - v ) ) ) = ( 2 x. ( ( F ` u ) x. ( G ` v ) ) ) -> A. v e. RR A. u e. RR ( ( F ` ( u + v ) ) + ( F ` ( u - v ) ) ) = ( 2 x. ( ( F ` u ) x. ( G ` v ) ) ) ) ) | 
						
							| 74 | 73 | imp |  |-  ( ( ph /\ A. u e. RR A. v e. RR ( ( F ` ( u + v ) ) + ( F ` ( u - v ) ) ) = ( 2 x. ( ( F ` u ) x. ( G ` v ) ) ) ) -> A. v e. RR A. u e. RR ( ( F ` ( u + v ) ) + ( F ` ( u - v ) ) ) = ( 2 x. ( ( F ` u ) x. ( G ` v ) ) ) ) | 
						
							| 75 | 4 74 | mpdan |  |-  ( ph -> A. v e. RR A. u e. RR ( ( F ` ( u + v ) ) + ( F ` ( u - v ) ) ) = ( 2 x. ( ( F ` u ) x. ( G ` v ) ) ) ) | 
						
							| 76 | 70 3 75 | rspcdv2 |  |-  ( ph -> A. u e. RR ( ( F ` ( u + B ) ) + ( F ` ( u - B ) ) ) = ( 2 x. ( ( F ` u ) x. ( G ` B ) ) ) ) | 
						
							| 77 | 76 | r19.21bi |  |-  ( ( ph /\ u e. RR ) -> ( ( F ` ( u + B ) ) + ( F ` ( u - B ) ) ) = ( 2 x. ( ( F ` u ) x. ( G ` B ) ) ) ) | 
						
							| 78 | 77 | adantlr |  |-  ( ( ( ph /\ 1 < ( abs ` ( G ` B ) ) ) /\ u e. RR ) -> ( ( F ` ( u + B ) ) + ( F ` ( u - B ) ) ) = ( 2 x. ( ( F ` u ) x. ( G ` B ) ) ) ) | 
						
							| 79 | 5 | ad2antrr |  |-  ( ( ( ph /\ 1 < ( abs ` ( G ` B ) ) ) /\ u e. RR ) -> A. y e. RR ( abs ` ( F ` y ) ) <_ 1 ) | 
						
							| 80 | 56 57 58 59 78 79 | imo72b2lem0 |  |-  ( ( ( ph /\ 1 < ( abs ` ( G ` B ) ) ) /\ u e. RR ) -> ( ( abs ` ( F ` u ) ) x. ( abs ` ( G ` B ) ) ) <_ sup ( ( abs " ( F " RR ) ) , RR , < ) ) | 
						
							| 81 |  | 0xr |  |-  0 e. RR* | 
						
							| 82 | 81 | a1i |  |-  ( ( ( ph /\ 1 < ( abs ` ( G ` B ) ) ) /\ u e. RR ) -> 0 e. RR* ) | 
						
							| 83 |  | 1xr |  |-  1 e. RR* | 
						
							| 84 | 83 | a1i |  |-  ( ( ( ph /\ 1 < ( abs ` ( G ` B ) ) ) /\ u e. RR ) -> 1 e. RR* ) | 
						
							| 85 | 16 | adantr |  |-  ( ( ( ph /\ 1 < ( abs ` ( G ` B ) ) ) /\ u e. RR ) -> ( abs ` ( G ` B ) ) e. RR ) | 
						
							| 86 | 85 | rexrd |  |-  ( ( ( ph /\ 1 < ( abs ` ( G ` B ) ) ) /\ u e. RR ) -> ( abs ` ( G ` B ) ) e. RR* ) | 
						
							| 87 | 51 | a1i |  |-  ( ( ( ph /\ 1 < ( abs ` ( G ` B ) ) ) /\ u e. RR ) -> 0 < 1 ) | 
						
							| 88 |  | simplr |  |-  ( ( ( ph /\ 1 < ( abs ` ( G ` B ) ) ) /\ u e. RR ) -> 1 < ( abs ` ( G ` B ) ) ) | 
						
							| 89 | 82 84 86 87 88 | xrlttrd |  |-  ( ( ( ph /\ 1 < ( abs ` ( G ` B ) ) ) /\ u e. RR ) -> 0 < ( abs ` ( G ` B ) ) ) | 
						
							| 90 | 23 | ffvelcdmda |  |-  ( ( ( ph /\ 1 < ( abs ` ( G ` B ) ) ) /\ u e. RR ) -> ( F ` u ) e. RR ) | 
						
							| 91 | 90 | recnd |  |-  ( ( ( ph /\ 1 < ( abs ` ( G ` B ) ) ) /\ u e. RR ) -> ( F ` u ) e. CC ) | 
						
							| 92 | 91 | abscld |  |-  ( ( ( ph /\ 1 < ( abs ` ( G ` B ) ) ) /\ u e. RR ) -> ( abs ` ( F ` u ) ) e. RR ) | 
						
							| 93 | 46 | adantr |  |-  ( ( ( ph /\ 1 < ( abs ` ( G ` B ) ) ) /\ u e. RR ) -> sup ( ( abs " ( F " RR ) ) , RR , < ) e. RR ) | 
						
							| 94 | 80 89 85 92 93 | lemuldiv3d |  |-  ( ( ( ph /\ 1 < ( abs ` ( G ` B ) ) ) /\ u e. RR ) -> ( abs ` ( F ` u ) ) <_ ( sup ( ( abs " ( F " RR ) ) , RR , < ) / ( abs ` ( G ` B ) ) ) ) | 
						
							| 95 | 94 | ralrimiva |  |-  ( ( ph /\ 1 < ( abs ` ( G ` B ) ) ) -> A. u e. RR ( abs ` ( F ` u ) ) <_ ( sup ( ( abs " ( F " RR ) ) , RR , < ) / ( abs ` ( G ` B ) ) ) ) | 
						
							| 96 | 23 55 95 | imo72b2lem2 |  |-  ( ( ph /\ 1 < ( abs ` ( G ` B ) ) ) -> sup ( ( abs " ( F " RR ) ) , RR , < ) <_ ( sup ( ( abs " ( F " RR ) ) , RR , < ) / ( abs ` ( G ` B ) ) ) ) | 
						
							| 97 | 96 53 16 46 46 | lemuldiv4d |  |-  ( ( ph /\ 1 < ( abs ` ( G ` B ) ) ) -> ( sup ( ( abs " ( F " RR ) ) , RR , < ) x. ( abs ` ( G ` B ) ) ) <_ sup ( ( abs " ( F " RR ) ) , RR , < ) ) | 
						
							| 98 | 49 97 | eqbrtrrd |  |-  ( ( ph /\ 1 < ( abs ` ( G ` B ) ) ) -> ( ( abs ` ( G ` B ) ) x. sup ( ( abs " ( F " RR ) ) , RR , < ) ) <_ sup ( ( abs " ( F " RR ) ) , RR , < ) ) | 
						
							| 99 | 6 | adantr |  |-  ( ( ph /\ 1 < ( abs ` ( G ` B ) ) ) -> E. x e. RR ( F ` x ) =/= 0 ) | 
						
							| 100 | 5 | adantr |  |-  ( ( ph /\ 1 < ( abs ` ( G ` B ) ) ) -> A. y e. RR ( abs ` ( F ` y ) ) <_ 1 ) | 
						
							| 101 | 23 99 100 | imo72b2lem1 |  |-  ( ( ph /\ 1 < ( abs ` ( G ` B ) ) ) -> 0 < sup ( ( abs " ( F " RR ) ) , RR , < ) ) | 
						
							| 102 | 98 101 46 16 46 | lemuldiv3d |  |-  ( ( ph /\ 1 < ( abs ` ( G ` B ) ) ) -> ( abs ` ( G ` B ) ) <_ ( sup ( ( abs " ( F " RR ) ) , RR , < ) / sup ( ( abs " ( F " RR ) ) , RR , < ) ) ) | 
						
							| 103 | 26 46 | sseldd |  |-  ( ( ph /\ 1 < ( abs ` ( G ` B ) ) ) -> sup ( ( abs " ( F " RR ) ) , RR , < ) e. CC ) | 
						
							| 104 | 101 | gt0ne0d |  |-  ( ( ph /\ 1 < ( abs ` ( G ` B ) ) ) -> sup ( ( abs " ( F " RR ) ) , RR , < ) =/= 0 ) | 
						
							| 105 | 103 104 | dividd |  |-  ( ( ph /\ 1 < ( abs ` ( G ` B ) ) ) -> ( sup ( ( abs " ( F " RR ) ) , RR , < ) / sup ( ( abs " ( F " RR ) ) , RR , < ) ) = 1 ) | 
						
							| 106 | 105 | eqcomd |  |-  ( ( ph /\ 1 < ( abs ` ( G ` B ) ) ) -> 1 = ( sup ( ( abs " ( F " RR ) ) , RR , < ) / sup ( ( abs " ( F " RR ) ) , RR , < ) ) ) | 
						
							| 107 | 102 106 | breqtrrd |  |-  ( ( ph /\ 1 < ( abs ` ( G ` B ) ) ) -> ( abs ` ( G ` B ) ) <_ 1 ) | 
						
							| 108 | 16 17 107 | lensymd |  |-  ( ( ph /\ 1 < ( abs ` ( G ` B ) ) ) -> -. 1 < ( abs ` ( G ` B ) ) ) | 
						
							| 109 | 11 108 | pm2.65da |  |-  ( ph -> -. 1 < ( abs ` ( G ` B ) ) ) | 
						
							| 110 | 9 10 109 | nltled |  |-  ( ph -> ( abs ` ( G ` B ) ) <_ 1 ) |