Metamath Proof Explorer


Theorem imo72b2lem2

Description: Lemma for imo72b2 . (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypotheses imo72b2lem2.1
|- ( ph -> F : RR --> RR )
imo72b2lem2.2
|- ( ph -> C e. RR )
imo72b2lem2.3
|- ( ph -> A. z e. RR ( abs ` ( F ` z ) ) <_ C )
Assertion imo72b2lem2
|- ( ph -> sup ( ( abs " ( F " RR ) ) , RR , < ) <_ C )

Proof

Step Hyp Ref Expression
1 imo72b2lem2.1
 |-  ( ph -> F : RR --> RR )
2 imo72b2lem2.2
 |-  ( ph -> C e. RR )
3 imo72b2lem2.3
 |-  ( ph -> A. z e. RR ( abs ` ( F ` z ) ) <_ C )
4 imaco
 |-  ( ( abs o. F ) " RR ) = ( abs " ( F " RR ) )
5 4 eqcomi
 |-  ( abs " ( F " RR ) ) = ( ( abs o. F ) " RR )
6 imassrn
 |-  ( ( abs o. F ) " RR ) C_ ran ( abs o. F )
7 6 a1i
 |-  ( ph -> ( ( abs o. F ) " RR ) C_ ran ( abs o. F ) )
8 absf
 |-  abs : CC --> RR
9 8 a1i
 |-  ( ph -> abs : CC --> RR )
10 ax-resscn
 |-  RR C_ CC
11 10 a1i
 |-  ( ph -> RR C_ CC )
12 9 11 fssresd
 |-  ( ph -> ( abs |` RR ) : RR --> RR )
13 1 12 fco2d
 |-  ( ph -> ( abs o. F ) : RR --> RR )
14 13 frnd
 |-  ( ph -> ran ( abs o. F ) C_ RR )
15 7 14 sstrd
 |-  ( ph -> ( ( abs o. F ) " RR ) C_ RR )
16 5 15 eqsstrid
 |-  ( ph -> ( abs " ( F " RR ) ) C_ RR )
17 0re
 |-  0 e. RR
18 17 ne0ii
 |-  RR =/= (/)
19 18 a1i
 |-  ( ph -> RR =/= (/) )
20 19 13 wnefimgd
 |-  ( ph -> ( ( abs o. F ) " RR ) =/= (/) )
21 20 necomd
 |-  ( ph -> (/) =/= ( ( abs o. F ) " RR ) )
22 5 a1i
 |-  ( ph -> ( abs " ( F " RR ) ) = ( ( abs o. F ) " RR ) )
23 21 22 neeqtrrd
 |-  ( ph -> (/) =/= ( abs " ( F " RR ) ) )
24 23 necomd
 |-  ( ph -> ( abs " ( F " RR ) ) =/= (/) )
25 simpr
 |-  ( ( ph /\ c = C ) -> c = C )
26 25 breq2d
 |-  ( ( ph /\ c = C ) -> ( v <_ c <-> v <_ C ) )
27 26 ralbidv
 |-  ( ( ph /\ c = C ) -> ( A. v e. ( abs " ( F " RR ) ) v <_ c <-> A. v e. ( abs " ( F " RR ) ) v <_ C ) )
28 1 3 extoimad
 |-  ( ph -> A. v e. ( abs " ( F " RR ) ) v <_ C )
29 2 27 28 rspcedvd
 |-  ( ph -> E. c e. RR A. v e. ( abs " ( F " RR ) ) v <_ c )
30 1 3 extoimad
 |-  ( ph -> A. t e. ( abs " ( F " RR ) ) t <_ C )
31 16 24 29 2 30 suprleubrd
 |-  ( ph -> sup ( ( abs " ( F " RR ) ) , RR , < ) <_ C )