| Step | Hyp | Ref | Expression | 
						
							| 1 |  | imo72b2lem2.1 |  |-  ( ph -> F : RR --> RR ) | 
						
							| 2 |  | imo72b2lem2.2 |  |-  ( ph -> C e. RR ) | 
						
							| 3 |  | imo72b2lem2.3 |  |-  ( ph -> A. z e. RR ( abs ` ( F ` z ) ) <_ C ) | 
						
							| 4 |  | imaco |  |-  ( ( abs o. F ) " RR ) = ( abs " ( F " RR ) ) | 
						
							| 5 | 4 | eqcomi |  |-  ( abs " ( F " RR ) ) = ( ( abs o. F ) " RR ) | 
						
							| 6 |  | imassrn |  |-  ( ( abs o. F ) " RR ) C_ ran ( abs o. F ) | 
						
							| 7 | 6 | a1i |  |-  ( ph -> ( ( abs o. F ) " RR ) C_ ran ( abs o. F ) ) | 
						
							| 8 |  | absf |  |-  abs : CC --> RR | 
						
							| 9 | 8 | a1i |  |-  ( ph -> abs : CC --> RR ) | 
						
							| 10 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 11 | 10 | a1i |  |-  ( ph -> RR C_ CC ) | 
						
							| 12 | 9 11 | fssresd |  |-  ( ph -> ( abs |` RR ) : RR --> RR ) | 
						
							| 13 | 1 12 | fco2d |  |-  ( ph -> ( abs o. F ) : RR --> RR ) | 
						
							| 14 | 13 | frnd |  |-  ( ph -> ran ( abs o. F ) C_ RR ) | 
						
							| 15 | 7 14 | sstrd |  |-  ( ph -> ( ( abs o. F ) " RR ) C_ RR ) | 
						
							| 16 | 5 15 | eqsstrid |  |-  ( ph -> ( abs " ( F " RR ) ) C_ RR ) | 
						
							| 17 |  | 0re |  |-  0 e. RR | 
						
							| 18 | 17 | ne0ii |  |-  RR =/= (/) | 
						
							| 19 | 18 | a1i |  |-  ( ph -> RR =/= (/) ) | 
						
							| 20 | 19 13 | wnefimgd |  |-  ( ph -> ( ( abs o. F ) " RR ) =/= (/) ) | 
						
							| 21 | 20 | necomd |  |-  ( ph -> (/) =/= ( ( abs o. F ) " RR ) ) | 
						
							| 22 | 5 | a1i |  |-  ( ph -> ( abs " ( F " RR ) ) = ( ( abs o. F ) " RR ) ) | 
						
							| 23 | 21 22 | neeqtrrd |  |-  ( ph -> (/) =/= ( abs " ( F " RR ) ) ) | 
						
							| 24 | 23 | necomd |  |-  ( ph -> ( abs " ( F " RR ) ) =/= (/) ) | 
						
							| 25 |  | simpr |  |-  ( ( ph /\ c = C ) -> c = C ) | 
						
							| 26 | 25 | breq2d |  |-  ( ( ph /\ c = C ) -> ( v <_ c <-> v <_ C ) ) | 
						
							| 27 | 26 | ralbidv |  |-  ( ( ph /\ c = C ) -> ( A. v e. ( abs " ( F " RR ) ) v <_ c <-> A. v e. ( abs " ( F " RR ) ) v <_ C ) ) | 
						
							| 28 | 1 3 | extoimad |  |-  ( ph -> A. v e. ( abs " ( F " RR ) ) v <_ C ) | 
						
							| 29 | 2 27 28 | rspcedvd |  |-  ( ph -> E. c e. RR A. v e. ( abs " ( F " RR ) ) v <_ c ) | 
						
							| 30 | 1 3 | extoimad |  |-  ( ph -> A. t e. ( abs " ( F " RR ) ) t <_ C ) | 
						
							| 31 | 16 24 29 2 30 | suprleubrd |  |-  ( ph -> sup ( ( abs " ( F " RR ) ) , RR , < ) <_ C ) |