Metamath Proof Explorer


Theorem imo72b2lem2

Description: Lemma for imo72b2 . (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypotheses imo72b2lem2.1 φ F :
imo72b2lem2.2 φ C
imo72b2lem2.3 φ z F z C
Assertion imo72b2lem2 φ sup abs F < C

Proof

Step Hyp Ref Expression
1 imo72b2lem2.1 φ F :
2 imo72b2lem2.2 φ C
3 imo72b2lem2.3 φ z F z C
4 imaco abs F = abs F
5 4 eqcomi abs F = abs F
6 imassrn abs F ran abs F
7 6 a1i φ abs F ran abs F
8 absf abs :
9 8 a1i φ abs :
10 ax-resscn
11 10 a1i φ
12 9 11 fssresd φ abs :
13 1 12 fco2d φ abs F :
14 13 frnd φ ran abs F
15 7 14 sstrd φ abs F
16 5 15 eqsstrid φ abs F
17 0re 0
18 17 ne0ii
19 18 a1i φ
20 19 13 wnefimgd φ abs F
21 20 necomd φ abs F
22 5 a1i φ abs F = abs F
23 21 22 neeqtrrd φ abs F
24 23 necomd φ abs F
25 simpr φ c = C c = C
26 25 breq2d φ c = C v c v C
27 26 ralbidv φ c = C v abs F v c v abs F v C
28 1 3 extoimad φ v abs F v C
29 2 27 28 rspcedvd φ c v abs F v c
30 1 3 extoimad φ t abs F t C
31 16 24 29 2 30 suprleubrd φ sup abs F < C