Metamath Proof Explorer
Description: 'Less than or equal to' relationship between division and
multiplication. (Contributed by Stanislas Polu, 9-Mar-2020)
|
|
Ref |
Expression |
|
Hypotheses |
lemuldiv3d.1 |
⊢ ( 𝜑 → ( 𝐵 · 𝐴 ) ≤ 𝐶 ) |
|
|
lemuldiv3d.2 |
⊢ ( 𝜑 → 0 < 𝐴 ) |
|
|
lemuldiv3d.3 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
|
|
lemuldiv3d.4 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
|
|
lemuldiv3d.5 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
|
Assertion |
lemuldiv3d |
⊢ ( 𝜑 → 𝐵 ≤ ( 𝐶 / 𝐴 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
lemuldiv3d.1 |
⊢ ( 𝜑 → ( 𝐵 · 𝐴 ) ≤ 𝐶 ) |
2 |
|
lemuldiv3d.2 |
⊢ ( 𝜑 → 0 < 𝐴 ) |
3 |
|
lemuldiv3d.3 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
4 |
|
lemuldiv3d.4 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
5 |
|
lemuldiv3d.5 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
6 |
|
lemuldiv |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) → ( ( 𝐵 · 𝐴 ) ≤ 𝐶 ↔ 𝐵 ≤ ( 𝐶 / 𝐴 ) ) ) |
7 |
4 5 3 2 6
|
syl112anc |
⊢ ( 𝜑 → ( ( 𝐵 · 𝐴 ) ≤ 𝐶 ↔ 𝐵 ≤ ( 𝐶 / 𝐴 ) ) ) |
8 |
1 7
|
mpbid |
⊢ ( 𝜑 → 𝐵 ≤ ( 𝐶 / 𝐴 ) ) |