Metamath Proof Explorer
		
		
		
		Description:  'Less than or equal to' relationship between division and
       multiplication.  (Contributed by Stanislas Polu, 9-Mar-2020)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | lemuldiv3d.1 | ⊢ ( 𝜑  →  ( 𝐵  ·  𝐴 )  ≤  𝐶 ) | 
					
						|  |  | lemuldiv3d.2 | ⊢ ( 𝜑  →  0  <  𝐴 ) | 
					
						|  |  | lemuldiv3d.3 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
					
						|  |  | lemuldiv3d.4 | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
					
						|  |  | lemuldiv3d.5 | ⊢ ( 𝜑  →  𝐶  ∈  ℝ ) | 
				
					|  | Assertion | lemuldiv3d | ⊢  ( 𝜑  →  𝐵  ≤  ( 𝐶  /  𝐴 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lemuldiv3d.1 | ⊢ ( 𝜑  →  ( 𝐵  ·  𝐴 )  ≤  𝐶 ) | 
						
							| 2 |  | lemuldiv3d.2 | ⊢ ( 𝜑  →  0  <  𝐴 ) | 
						
							| 3 |  | lemuldiv3d.3 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 4 |  | lemuldiv3d.4 | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 5 |  | lemuldiv3d.5 | ⊢ ( 𝜑  →  𝐶  ∈  ℝ ) | 
						
							| 6 |  | lemuldiv | ⊢ ( ( 𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ  ∧  ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 ) )  →  ( ( 𝐵  ·  𝐴 )  ≤  𝐶  ↔  𝐵  ≤  ( 𝐶  /  𝐴 ) ) ) | 
						
							| 7 | 4 5 3 2 6 | syl112anc | ⊢ ( 𝜑  →  ( ( 𝐵  ·  𝐴 )  ≤  𝐶  ↔  𝐵  ≤  ( 𝐶  /  𝐴 ) ) ) | 
						
							| 8 | 1 7 | mpbid | ⊢ ( 𝜑  →  𝐵  ≤  ( 𝐶  /  𝐴 ) ) |