Metamath Proof Explorer


Theorem lemuldiv3d

Description: 'Less than or equal to' relationship between division and multiplication. (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypotheses lemuldiv3d.1 φBAC
lemuldiv3d.2 φ0<A
lemuldiv3d.3 φA
lemuldiv3d.4 φB
lemuldiv3d.5 φC
Assertion lemuldiv3d φBCA

Proof

Step Hyp Ref Expression
1 lemuldiv3d.1 φBAC
2 lemuldiv3d.2 φ0<A
3 lemuldiv3d.3 φA
4 lemuldiv3d.4 φB
5 lemuldiv3d.5 φC
6 lemuldiv BCA0<ABACBCA
7 4 5 3 2 6 syl112anc φBACBCA
8 1 7 mpbid φBCA