Metamath Proof Explorer


Theorem imo72b2lem0

Description: Lemma for imo72b2 . (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypotheses imo72b2lem0.1 ( 𝜑𝐹 : ℝ ⟶ ℝ )
imo72b2lem0.2 ( 𝜑𝐺 : ℝ ⟶ ℝ )
imo72b2lem0.3 ( 𝜑𝐴 ∈ ℝ )
imo72b2lem0.4 ( 𝜑𝐵 ∈ ℝ )
imo72b2lem0.5 ( 𝜑 → ( ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) + ( 𝐹 ‘ ( 𝐴𝐵 ) ) ) = ( 2 · ( ( 𝐹𝐴 ) · ( 𝐺𝐵 ) ) ) )
imo72b2lem0.6 ( 𝜑 → ∀ 𝑦 ∈ ℝ ( abs ‘ ( 𝐹𝑦 ) ) ≤ 1 )
Assertion imo72b2lem0 ( 𝜑 → ( ( abs ‘ ( 𝐹𝐴 ) ) · ( abs ‘ ( 𝐺𝐵 ) ) ) ≤ sup ( ( abs “ ( 𝐹 “ ℝ ) ) , ℝ , < ) )

Proof

Step Hyp Ref Expression
1 imo72b2lem0.1 ( 𝜑𝐹 : ℝ ⟶ ℝ )
2 imo72b2lem0.2 ( 𝜑𝐺 : ℝ ⟶ ℝ )
3 imo72b2lem0.3 ( 𝜑𝐴 ∈ ℝ )
4 imo72b2lem0.4 ( 𝜑𝐵 ∈ ℝ )
5 imo72b2lem0.5 ( 𝜑 → ( ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) + ( 𝐹 ‘ ( 𝐴𝐵 ) ) ) = ( 2 · ( ( 𝐹𝐴 ) · ( 𝐺𝐵 ) ) ) )
6 imo72b2lem0.6 ( 𝜑 → ∀ 𝑦 ∈ ℝ ( abs ‘ ( 𝐹𝑦 ) ) ≤ 1 )
7 1 3 ffvelrnd ( 𝜑 → ( 𝐹𝐴 ) ∈ ℝ )
8 7 recnd ( 𝜑 → ( 𝐹𝐴 ) ∈ ℂ )
9 8 idi ( 𝜑 → ( 𝐹𝐴 ) ∈ ℂ )
10 2 4 ffvelrnd ( 𝜑 → ( 𝐺𝐵 ) ∈ ℝ )
11 10 recnd ( 𝜑 → ( 𝐺𝐵 ) ∈ ℂ )
12 11 idi ( 𝜑 → ( 𝐺𝐵 ) ∈ ℂ )
13 9 12 mulcld ( 𝜑 → ( ( 𝐹𝐴 ) · ( 𝐺𝐵 ) ) ∈ ℂ )
14 13 abscld ( 𝜑 → ( abs ‘ ( ( 𝐹𝐴 ) · ( 𝐺𝐵 ) ) ) ∈ ℝ )
15 imaco ( ( abs ∘ 𝐹 ) “ ℝ ) = ( abs “ ( 𝐹 “ ℝ ) )
16 15 eqcomi ( abs “ ( 𝐹 “ ℝ ) ) = ( ( abs ∘ 𝐹 ) “ ℝ )
17 imassrn ( ( abs ∘ 𝐹 ) “ ℝ ) ⊆ ran ( abs ∘ 𝐹 )
18 17 a1i ( 𝜑 → ( ( abs ∘ 𝐹 ) “ ℝ ) ⊆ ran ( abs ∘ 𝐹 ) )
19 absf abs : ℂ ⟶ ℝ
20 19 a1i ( 𝜑 → abs : ℂ ⟶ ℝ )
21 ax-resscn ℝ ⊆ ℂ
22 21 a1i ( 𝜑 → ℝ ⊆ ℂ )
23 20 22 fssresd ( 𝜑 → ( abs ↾ ℝ ) : ℝ ⟶ ℝ )
24 1 23 fco2d ( 𝜑 → ( abs ∘ 𝐹 ) : ℝ ⟶ ℝ )
25 24 frnd ( 𝜑 → ran ( abs ∘ 𝐹 ) ⊆ ℝ )
26 18 25 sstrd ( 𝜑 → ( ( abs ∘ 𝐹 ) “ ℝ ) ⊆ ℝ )
27 16 26 eqsstrid ( 𝜑 → ( abs “ ( 𝐹 “ ℝ ) ) ⊆ ℝ )
28 0re 0 ∈ ℝ
29 28 ne0ii ℝ ≠ ∅
30 29 a1i ( 𝜑 → ℝ ≠ ∅ )
31 30 24 wnefimgd ( 𝜑 → ( ( abs ∘ 𝐹 ) “ ℝ ) ≠ ∅ )
32 31 necomd ( 𝜑 → ∅ ≠ ( ( abs ∘ 𝐹 ) “ ℝ ) )
33 16 a1i ( 𝜑 → ( abs “ ( 𝐹 “ ℝ ) ) = ( ( abs ∘ 𝐹 ) “ ℝ ) )
34 32 33 neeqtrrd ( 𝜑 → ∅ ≠ ( abs “ ( 𝐹 “ ℝ ) ) )
35 34 necomd ( 𝜑 → ( abs “ ( 𝐹 “ ℝ ) ) ≠ ∅ )
36 1red ( 𝜑 → 1 ∈ ℝ )
37 simpr ( ( 𝜑𝑐 = 1 ) → 𝑐 = 1 )
38 37 breq2d ( ( 𝜑𝑐 = 1 ) → ( 𝑥𝑐𝑥 ≤ 1 ) )
39 38 ralbidv ( ( 𝜑𝑐 = 1 ) → ( ∀ 𝑥 ∈ ( abs “ ( 𝐹 “ ℝ ) ) 𝑥𝑐 ↔ ∀ 𝑥 ∈ ( abs “ ( 𝐹 “ ℝ ) ) 𝑥 ≤ 1 ) )
40 1 6 extoimad ( 𝜑 → ∀ 𝑥 ∈ ( abs “ ( 𝐹 “ ℝ ) ) 𝑥 ≤ 1 )
41 36 39 40 rspcedvd ( 𝜑 → ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ ( abs “ ( 𝐹 “ ℝ ) ) 𝑥𝑐 )
42 27 35 41 suprcld ( 𝜑 → sup ( ( abs “ ( 𝐹 “ ℝ ) ) , ℝ , < ) ∈ ℝ )
43 2re 2 ∈ ℝ
44 43 a1i ( 𝜑 → 2 ∈ ℝ )
45 5 idi ( 𝜑 → ( ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) + ( 𝐹 ‘ ( 𝐴𝐵 ) ) ) = ( 2 · ( ( 𝐹𝐴 ) · ( 𝐺𝐵 ) ) ) )
46 45 fveq2d ( 𝜑 → ( abs ‘ ( ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) + ( 𝐹 ‘ ( 𝐴𝐵 ) ) ) ) = ( abs ‘ ( 2 · ( ( 𝐹𝐴 ) · ( 𝐺𝐵 ) ) ) ) )
47 2cnd ( 𝜑 → 2 ∈ ℂ )
48 47 13 mulcld ( 𝜑 → ( 2 · ( ( 𝐹𝐴 ) · ( 𝐺𝐵 ) ) ) ∈ ℂ )
49 48 abscld ( 𝜑 → ( abs ‘ ( 2 · ( ( 𝐹𝐴 ) · ( 𝐺𝐵 ) ) ) ) ∈ ℝ )
50 46 49 eqeltrd ( 𝜑 → ( abs ‘ ( ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) + ( 𝐹 ‘ ( 𝐴𝐵 ) ) ) ) ∈ ℝ )
51 1 idi ( 𝜑𝐹 : ℝ ⟶ ℝ )
52 3 idi ( 𝜑𝐴 ∈ ℝ )
53 4 idi ( 𝜑𝐵 ∈ ℝ )
54 52 53 readdcld ( 𝜑 → ( 𝐴 + 𝐵 ) ∈ ℝ )
55 51 54 ffvelrnd ( 𝜑 → ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) ∈ ℝ )
56 55 recnd ( 𝜑 → ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) ∈ ℂ )
57 56 abscld ( 𝜑 → ( abs ‘ ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) ) ∈ ℝ )
58 52 53 resubcld ( 𝜑 → ( 𝐴𝐵 ) ∈ ℝ )
59 51 58 ffvelrnd ( 𝜑 → ( 𝐹 ‘ ( 𝐴𝐵 ) ) ∈ ℝ )
60 59 recnd ( 𝜑 → ( 𝐹 ‘ ( 𝐴𝐵 ) ) ∈ ℂ )
61 60 abscld ( 𝜑 → ( abs ‘ ( 𝐹 ‘ ( 𝐴𝐵 ) ) ) ∈ ℝ )
62 57 61 readdcld ( 𝜑 → ( ( abs ‘ ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) ) + ( abs ‘ ( 𝐹 ‘ ( 𝐴𝐵 ) ) ) ) ∈ ℝ )
63 44 42 remulcld ( 𝜑 → ( 2 · sup ( ( abs “ ( 𝐹 “ ℝ ) ) , ℝ , < ) ) ∈ ℝ )
64 56 60 abstrid ( 𝜑 → ( abs ‘ ( ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) + ( 𝐹 ‘ ( 𝐴𝐵 ) ) ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) ) + ( abs ‘ ( 𝐹 ‘ ( 𝐴𝐵 ) ) ) ) )
65 1 54 fvco3d ( 𝜑 → ( ( abs ∘ 𝐹 ) ‘ ( 𝐴 + 𝐵 ) ) = ( abs ‘ ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) ) )
66 54 24 wfximgfd ( 𝜑 → ( ( abs ∘ 𝐹 ) ‘ ( 𝐴 + 𝐵 ) ) ∈ ( ( abs ∘ 𝐹 ) “ ℝ ) )
67 33 idi ( 𝜑 → ( abs “ ( 𝐹 “ ℝ ) ) = ( ( abs ∘ 𝐹 ) “ ℝ ) )
68 66 67 eleqtrrd ( 𝜑 → ( ( abs ∘ 𝐹 ) ‘ ( 𝐴 + 𝐵 ) ) ∈ ( abs “ ( 𝐹 “ ℝ ) ) )
69 65 68 eqeltrrd ( 𝜑 → ( abs ‘ ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) ) ∈ ( abs “ ( 𝐹 “ ℝ ) ) )
70 27 35 41 69 suprubd ( 𝜑 → ( abs ‘ ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) ) ≤ sup ( ( abs “ ( 𝐹 “ ℝ ) ) , ℝ , < ) )
71 1 58 fvco3d ( 𝜑 → ( ( abs ∘ 𝐹 ) ‘ ( 𝐴𝐵 ) ) = ( abs ‘ ( 𝐹 ‘ ( 𝐴𝐵 ) ) ) )
72 58 24 wfximgfd ( 𝜑 → ( ( abs ∘ 𝐹 ) ‘ ( 𝐴𝐵 ) ) ∈ ( ( abs ∘ 𝐹 ) “ ℝ ) )
73 72 33 eleqtrrd ( 𝜑 → ( ( abs ∘ 𝐹 ) ‘ ( 𝐴𝐵 ) ) ∈ ( abs “ ( 𝐹 “ ℝ ) ) )
74 71 73 eqeltrrd ( 𝜑 → ( abs ‘ ( 𝐹 ‘ ( 𝐴𝐵 ) ) ) ∈ ( abs “ ( 𝐹 “ ℝ ) ) )
75 27 35 41 74 suprubd ( 𝜑 → ( abs ‘ ( 𝐹 ‘ ( 𝐴𝐵 ) ) ) ≤ sup ( ( abs “ ( 𝐹 “ ℝ ) ) , ℝ , < ) )
76 57 61 42 42 70 75 le2addd ( 𝜑 → ( ( abs ‘ ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) ) + ( abs ‘ ( 𝐹 ‘ ( 𝐴𝐵 ) ) ) ) ≤ ( sup ( ( abs “ ( 𝐹 “ ℝ ) ) , ℝ , < ) + sup ( ( abs “ ( 𝐹 “ ℝ ) ) , ℝ , < ) ) )
77 42 recnd ( 𝜑 → sup ( ( abs “ ( 𝐹 “ ℝ ) ) , ℝ , < ) ∈ ℂ )
78 77 2timesd ( 𝜑 → ( 2 · sup ( ( abs “ ( 𝐹 “ ℝ ) ) , ℝ , < ) ) = ( sup ( ( abs “ ( 𝐹 “ ℝ ) ) , ℝ , < ) + sup ( ( abs “ ( 𝐹 “ ℝ ) ) , ℝ , < ) ) )
79 78 eqcomd ( 𝜑 → ( sup ( ( abs “ ( 𝐹 “ ℝ ) ) , ℝ , < ) + sup ( ( abs “ ( 𝐹 “ ℝ ) ) , ℝ , < ) ) = ( 2 · sup ( ( abs “ ( 𝐹 “ ℝ ) ) , ℝ , < ) ) )
80 79 63 eqeltrd ( 𝜑 → ( sup ( ( abs “ ( 𝐹 “ ℝ ) ) , ℝ , < ) + sup ( ( abs “ ( 𝐹 “ ℝ ) ) , ℝ , < ) ) ∈ ℝ )
81 76 79 62 80 leeq2d ( 𝜑 → ( ( abs ‘ ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) ) + ( abs ‘ ( 𝐹 ‘ ( 𝐴𝐵 ) ) ) ) ≤ ( 2 · sup ( ( abs “ ( 𝐹 “ ℝ ) ) , ℝ , < ) ) )
82 50 62 63 64 81 letrd ( 𝜑 → ( abs ‘ ( ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) + ( 𝐹 ‘ ( 𝐴𝐵 ) ) ) ) ≤ ( 2 · sup ( ( abs “ ( 𝐹 “ ℝ ) ) , ℝ , < ) ) )
83 82 46 50 63 leeq1d ( 𝜑 → ( abs ‘ ( 2 · ( ( 𝐹𝐴 ) · ( 𝐺𝐵 ) ) ) ) ≤ ( 2 · sup ( ( abs “ ( 𝐹 “ ℝ ) ) , ℝ , < ) ) )
84 0le2 0 ≤ 2
85 84 a1i ( 𝜑 → 0 ≤ 2 )
86 7 idi ( 𝜑 → ( 𝐹𝐴 ) ∈ ℝ )
87 10 idi ( 𝜑 → ( 𝐺𝐵 ) ∈ ℝ )
88 86 87 remulcld ( 𝜑 → ( ( 𝐹𝐴 ) · ( 𝐺𝐵 ) ) ∈ ℝ )
89 85 44 88 absmulrposd ( 𝜑 → ( abs ‘ ( 2 · ( ( 𝐹𝐴 ) · ( 𝐺𝐵 ) ) ) ) = ( 2 · ( abs ‘ ( ( 𝐹𝐴 ) · ( 𝐺𝐵 ) ) ) ) )
90 83 89 49 63 leeq1d ( 𝜑 → ( 2 · ( abs ‘ ( ( 𝐹𝐴 ) · ( 𝐺𝐵 ) ) ) ) ≤ ( 2 · sup ( ( abs “ ( 𝐹 “ ℝ ) ) , ℝ , < ) ) )
91 2pos 0 < 2
92 91 a1i ( 𝜑 → 0 < 2 )
93 14 42 44 90 92 wwlemuld ( 𝜑 → ( abs ‘ ( ( 𝐹𝐴 ) · ( 𝐺𝐵 ) ) ) ≤ sup ( ( abs “ ( 𝐹 “ ℝ ) ) , ℝ , < ) )
94 8 11 absmuld ( 𝜑 → ( abs ‘ ( ( 𝐹𝐴 ) · ( 𝐺𝐵 ) ) ) = ( ( abs ‘ ( 𝐹𝐴 ) ) · ( abs ‘ ( 𝐺𝐵 ) ) ) )
95 94 idi ( 𝜑 → ( abs ‘ ( ( 𝐹𝐴 ) · ( 𝐺𝐵 ) ) ) = ( ( abs ‘ ( 𝐹𝐴 ) ) · ( abs ‘ ( 𝐺𝐵 ) ) ) )
96 93 95 14 42 leeq1d ( 𝜑 → ( ( abs ‘ ( 𝐹𝐴 ) ) · ( abs ‘ ( 𝐺𝐵 ) ) ) ≤ sup ( ( abs “ ( 𝐹 “ ℝ ) ) , ℝ , < ) )