| Step |
Hyp |
Ref |
Expression |
| 1 |
|
imo72b2lem0.1 |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) |
| 2 |
|
imo72b2lem0.2 |
⊢ ( 𝜑 → 𝐺 : ℝ ⟶ ℝ ) |
| 3 |
|
imo72b2lem0.3 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 4 |
|
imo72b2lem0.4 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 5 |
|
imo72b2lem0.5 |
⊢ ( 𝜑 → ( ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) + ( 𝐹 ‘ ( 𝐴 − 𝐵 ) ) ) = ( 2 · ( ( 𝐹 ‘ 𝐴 ) · ( 𝐺 ‘ 𝐵 ) ) ) ) |
| 6 |
|
imo72b2lem0.6 |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ℝ ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 1 ) |
| 7 |
1 3
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ∈ ℝ ) |
| 8 |
7
|
recnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ∈ ℂ ) |
| 9 |
2 4
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝐵 ) ∈ ℝ ) |
| 10 |
9
|
recnd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝐵 ) ∈ ℂ ) |
| 11 |
8 10
|
absmuld |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) · ( 𝐺 ‘ 𝐵 ) ) ) = ( ( abs ‘ ( 𝐹 ‘ 𝐴 ) ) · ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) ) ) |
| 12 |
8 10
|
mulcld |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) · ( 𝐺 ‘ 𝐵 ) ) ∈ ℂ ) |
| 13 |
12
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) · ( 𝐺 ‘ 𝐵 ) ) ) ∈ ℝ ) |
| 14 |
|
absf |
⊢ abs : ℂ ⟶ ℝ |
| 15 |
14
|
a1i |
⊢ ( 𝜑 → abs : ℂ ⟶ ℝ ) |
| 16 |
15
|
fimassd |
⊢ ( 𝜑 → ( abs “ ( 𝐹 “ ℝ ) ) ⊆ ℝ ) |
| 17 |
|
imaco |
⊢ ( ( abs ∘ 𝐹 ) “ ℝ ) = ( abs “ ( 𝐹 “ ℝ ) ) |
| 18 |
3
|
ne0d |
⊢ ( 𝜑 → ℝ ≠ ∅ ) |
| 19 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 20 |
19
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
| 21 |
15 20
|
fssresd |
⊢ ( 𝜑 → ( abs ↾ ℝ ) : ℝ ⟶ ℝ ) |
| 22 |
1 21
|
fco2d |
⊢ ( 𝜑 → ( abs ∘ 𝐹 ) : ℝ ⟶ ℝ ) |
| 23 |
18 22
|
wnefimgd |
⊢ ( 𝜑 → ( ( abs ∘ 𝐹 ) “ ℝ ) ≠ ∅ ) |
| 24 |
17 23
|
eqnetrrid |
⊢ ( 𝜑 → ( abs “ ( 𝐹 “ ℝ ) ) ≠ ∅ ) |
| 25 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 26 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑐 = 1 ) → 𝑐 = 1 ) |
| 27 |
26
|
breq2d |
⊢ ( ( 𝜑 ∧ 𝑐 = 1 ) → ( 𝑥 ≤ 𝑐 ↔ 𝑥 ≤ 1 ) ) |
| 28 |
27
|
ralbidv |
⊢ ( ( 𝜑 ∧ 𝑐 = 1 ) → ( ∀ 𝑥 ∈ ( abs “ ( 𝐹 “ ℝ ) ) 𝑥 ≤ 𝑐 ↔ ∀ 𝑥 ∈ ( abs “ ( 𝐹 “ ℝ ) ) 𝑥 ≤ 1 ) ) |
| 29 |
1 6
|
extoimad |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( abs “ ( 𝐹 “ ℝ ) ) 𝑥 ≤ 1 ) |
| 30 |
25 28 29
|
rspcedvd |
⊢ ( 𝜑 → ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ ( abs “ ( 𝐹 “ ℝ ) ) 𝑥 ≤ 𝑐 ) |
| 31 |
16 24 30
|
suprcld |
⊢ ( 𝜑 → sup ( ( abs “ ( 𝐹 “ ℝ ) ) , ℝ , < ) ∈ ℝ ) |
| 32 |
|
2re |
⊢ 2 ∈ ℝ |
| 33 |
32
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ ) |
| 34 |
|
0le2 |
⊢ 0 ≤ 2 |
| 35 |
34
|
a1i |
⊢ ( 𝜑 → 0 ≤ 2 ) |
| 36 |
7 9
|
remulcld |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) · ( 𝐺 ‘ 𝐵 ) ) ∈ ℝ ) |
| 37 |
35 33 36
|
absmulrposd |
⊢ ( 𝜑 → ( abs ‘ ( 2 · ( ( 𝐹 ‘ 𝐴 ) · ( 𝐺 ‘ 𝐵 ) ) ) ) = ( 2 · ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) · ( 𝐺 ‘ 𝐵 ) ) ) ) ) |
| 38 |
5
|
fveq2d |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) + ( 𝐹 ‘ ( 𝐴 − 𝐵 ) ) ) ) = ( abs ‘ ( 2 · ( ( 𝐹 ‘ 𝐴 ) · ( 𝐺 ‘ 𝐵 ) ) ) ) ) |
| 39 |
|
2cnd |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
| 40 |
39 12
|
mulcld |
⊢ ( 𝜑 → ( 2 · ( ( 𝐹 ‘ 𝐴 ) · ( 𝐺 ‘ 𝐵 ) ) ) ∈ ℂ ) |
| 41 |
40
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( 2 · ( ( 𝐹 ‘ 𝐴 ) · ( 𝐺 ‘ 𝐵 ) ) ) ) ∈ ℝ ) |
| 42 |
38 41
|
eqeltrd |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) + ( 𝐹 ‘ ( 𝐴 − 𝐵 ) ) ) ) ∈ ℝ ) |
| 43 |
3 4
|
readdcld |
⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) ∈ ℝ ) |
| 44 |
1 43
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) ∈ ℝ ) |
| 45 |
44
|
recnd |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) ∈ ℂ ) |
| 46 |
45
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) ) ∈ ℝ ) |
| 47 |
3 4
|
resubcld |
⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) ∈ ℝ ) |
| 48 |
1 47
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝐴 − 𝐵 ) ) ∈ ℝ ) |
| 49 |
48
|
recnd |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝐴 − 𝐵 ) ) ∈ ℂ ) |
| 50 |
49
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( 𝐹 ‘ ( 𝐴 − 𝐵 ) ) ) ∈ ℝ ) |
| 51 |
46 50
|
readdcld |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) ) + ( abs ‘ ( 𝐹 ‘ ( 𝐴 − 𝐵 ) ) ) ) ∈ ℝ ) |
| 52 |
33 31
|
remulcld |
⊢ ( 𝜑 → ( 2 · sup ( ( abs “ ( 𝐹 “ ℝ ) ) , ℝ , < ) ) ∈ ℝ ) |
| 53 |
45 49
|
abstrid |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) + ( 𝐹 ‘ ( 𝐴 − 𝐵 ) ) ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) ) + ( abs ‘ ( 𝐹 ‘ ( 𝐴 − 𝐵 ) ) ) ) ) |
| 54 |
1 43
|
fvco3d |
⊢ ( 𝜑 → ( ( abs ∘ 𝐹 ) ‘ ( 𝐴 + 𝐵 ) ) = ( abs ‘ ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) ) ) |
| 55 |
43 22
|
wfximgfd |
⊢ ( 𝜑 → ( ( abs ∘ 𝐹 ) ‘ ( 𝐴 + 𝐵 ) ) ∈ ( ( abs ∘ 𝐹 ) “ ℝ ) ) |
| 56 |
55 17
|
eleqtrdi |
⊢ ( 𝜑 → ( ( abs ∘ 𝐹 ) ‘ ( 𝐴 + 𝐵 ) ) ∈ ( abs “ ( 𝐹 “ ℝ ) ) ) |
| 57 |
54 56
|
eqeltrrd |
⊢ ( 𝜑 → ( abs ‘ ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) ) ∈ ( abs “ ( 𝐹 “ ℝ ) ) ) |
| 58 |
16 24 30 57
|
suprubd |
⊢ ( 𝜑 → ( abs ‘ ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) ) ≤ sup ( ( abs “ ( 𝐹 “ ℝ ) ) , ℝ , < ) ) |
| 59 |
1 47
|
fvco3d |
⊢ ( 𝜑 → ( ( abs ∘ 𝐹 ) ‘ ( 𝐴 − 𝐵 ) ) = ( abs ‘ ( 𝐹 ‘ ( 𝐴 − 𝐵 ) ) ) ) |
| 60 |
47 22
|
wfximgfd |
⊢ ( 𝜑 → ( ( abs ∘ 𝐹 ) ‘ ( 𝐴 − 𝐵 ) ) ∈ ( ( abs ∘ 𝐹 ) “ ℝ ) ) |
| 61 |
60 17
|
eleqtrdi |
⊢ ( 𝜑 → ( ( abs ∘ 𝐹 ) ‘ ( 𝐴 − 𝐵 ) ) ∈ ( abs “ ( 𝐹 “ ℝ ) ) ) |
| 62 |
59 61
|
eqeltrrd |
⊢ ( 𝜑 → ( abs ‘ ( 𝐹 ‘ ( 𝐴 − 𝐵 ) ) ) ∈ ( abs “ ( 𝐹 “ ℝ ) ) ) |
| 63 |
16 24 30 62
|
suprubd |
⊢ ( 𝜑 → ( abs ‘ ( 𝐹 ‘ ( 𝐴 − 𝐵 ) ) ) ≤ sup ( ( abs “ ( 𝐹 “ ℝ ) ) , ℝ , < ) ) |
| 64 |
46 50 31 31 58 63
|
le2addd |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) ) + ( abs ‘ ( 𝐹 ‘ ( 𝐴 − 𝐵 ) ) ) ) ≤ ( sup ( ( abs “ ( 𝐹 “ ℝ ) ) , ℝ , < ) + sup ( ( abs “ ( 𝐹 “ ℝ ) ) , ℝ , < ) ) ) |
| 65 |
31
|
recnd |
⊢ ( 𝜑 → sup ( ( abs “ ( 𝐹 “ ℝ ) ) , ℝ , < ) ∈ ℂ ) |
| 66 |
65
|
2timesd |
⊢ ( 𝜑 → ( 2 · sup ( ( abs “ ( 𝐹 “ ℝ ) ) , ℝ , < ) ) = ( sup ( ( abs “ ( 𝐹 “ ℝ ) ) , ℝ , < ) + sup ( ( abs “ ( 𝐹 “ ℝ ) ) , ℝ , < ) ) ) |
| 67 |
64 66
|
breqtrrd |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) ) + ( abs ‘ ( 𝐹 ‘ ( 𝐴 − 𝐵 ) ) ) ) ≤ ( 2 · sup ( ( abs “ ( 𝐹 “ ℝ ) ) , ℝ , < ) ) ) |
| 68 |
42 51 52 53 67
|
letrd |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) + ( 𝐹 ‘ ( 𝐴 − 𝐵 ) ) ) ) ≤ ( 2 · sup ( ( abs “ ( 𝐹 “ ℝ ) ) , ℝ , < ) ) ) |
| 69 |
38 68
|
eqbrtrrd |
⊢ ( 𝜑 → ( abs ‘ ( 2 · ( ( 𝐹 ‘ 𝐴 ) · ( 𝐺 ‘ 𝐵 ) ) ) ) ≤ ( 2 · sup ( ( abs “ ( 𝐹 “ ℝ ) ) , ℝ , < ) ) ) |
| 70 |
37 69
|
eqbrtrrd |
⊢ ( 𝜑 → ( 2 · ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) · ( 𝐺 ‘ 𝐵 ) ) ) ) ≤ ( 2 · sup ( ( abs “ ( 𝐹 “ ℝ ) ) , ℝ , < ) ) ) |
| 71 |
|
2pos |
⊢ 0 < 2 |
| 72 |
71
|
a1i |
⊢ ( 𝜑 → 0 < 2 ) |
| 73 |
13 31 33 70 72
|
wwlemuld |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) · ( 𝐺 ‘ 𝐵 ) ) ) ≤ sup ( ( abs “ ( 𝐹 “ ℝ ) ) , ℝ , < ) ) |
| 74 |
11 73
|
eqbrtrrd |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐹 ‘ 𝐴 ) ) · ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) ) ≤ sup ( ( abs “ ( 𝐹 “ ℝ ) ) , ℝ , < ) ) |