Step |
Hyp |
Ref |
Expression |
1 |
|
imo72b2lem0.1 |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) |
2 |
|
imo72b2lem0.2 |
⊢ ( 𝜑 → 𝐺 : ℝ ⟶ ℝ ) |
3 |
|
imo72b2lem0.3 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
4 |
|
imo72b2lem0.4 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
5 |
|
imo72b2lem0.5 |
⊢ ( 𝜑 → ( ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) + ( 𝐹 ‘ ( 𝐴 − 𝐵 ) ) ) = ( 2 · ( ( 𝐹 ‘ 𝐴 ) · ( 𝐺 ‘ 𝐵 ) ) ) ) |
6 |
|
imo72b2lem0.6 |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ℝ ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 1 ) |
7 |
1 3
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ∈ ℝ ) |
8 |
7
|
recnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ∈ ℂ ) |
9 |
8
|
idi |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ∈ ℂ ) |
10 |
2 4
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝐵 ) ∈ ℝ ) |
11 |
10
|
recnd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝐵 ) ∈ ℂ ) |
12 |
11
|
idi |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝐵 ) ∈ ℂ ) |
13 |
9 12
|
mulcld |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) · ( 𝐺 ‘ 𝐵 ) ) ∈ ℂ ) |
14 |
13
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) · ( 𝐺 ‘ 𝐵 ) ) ) ∈ ℝ ) |
15 |
|
imaco |
⊢ ( ( abs ∘ 𝐹 ) “ ℝ ) = ( abs “ ( 𝐹 “ ℝ ) ) |
16 |
15
|
eqcomi |
⊢ ( abs “ ( 𝐹 “ ℝ ) ) = ( ( abs ∘ 𝐹 ) “ ℝ ) |
17 |
|
imassrn |
⊢ ( ( abs ∘ 𝐹 ) “ ℝ ) ⊆ ran ( abs ∘ 𝐹 ) |
18 |
17
|
a1i |
⊢ ( 𝜑 → ( ( abs ∘ 𝐹 ) “ ℝ ) ⊆ ran ( abs ∘ 𝐹 ) ) |
19 |
|
absf |
⊢ abs : ℂ ⟶ ℝ |
20 |
19
|
a1i |
⊢ ( 𝜑 → abs : ℂ ⟶ ℝ ) |
21 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
22 |
21
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
23 |
20 22
|
fssresd |
⊢ ( 𝜑 → ( abs ↾ ℝ ) : ℝ ⟶ ℝ ) |
24 |
1 23
|
fco2d |
⊢ ( 𝜑 → ( abs ∘ 𝐹 ) : ℝ ⟶ ℝ ) |
25 |
24
|
frnd |
⊢ ( 𝜑 → ran ( abs ∘ 𝐹 ) ⊆ ℝ ) |
26 |
18 25
|
sstrd |
⊢ ( 𝜑 → ( ( abs ∘ 𝐹 ) “ ℝ ) ⊆ ℝ ) |
27 |
16 26
|
eqsstrid |
⊢ ( 𝜑 → ( abs “ ( 𝐹 “ ℝ ) ) ⊆ ℝ ) |
28 |
|
0re |
⊢ 0 ∈ ℝ |
29 |
28
|
ne0ii |
⊢ ℝ ≠ ∅ |
30 |
29
|
a1i |
⊢ ( 𝜑 → ℝ ≠ ∅ ) |
31 |
30 24
|
wnefimgd |
⊢ ( 𝜑 → ( ( abs ∘ 𝐹 ) “ ℝ ) ≠ ∅ ) |
32 |
31
|
necomd |
⊢ ( 𝜑 → ∅ ≠ ( ( abs ∘ 𝐹 ) “ ℝ ) ) |
33 |
16
|
a1i |
⊢ ( 𝜑 → ( abs “ ( 𝐹 “ ℝ ) ) = ( ( abs ∘ 𝐹 ) “ ℝ ) ) |
34 |
32 33
|
neeqtrrd |
⊢ ( 𝜑 → ∅ ≠ ( abs “ ( 𝐹 “ ℝ ) ) ) |
35 |
34
|
necomd |
⊢ ( 𝜑 → ( abs “ ( 𝐹 “ ℝ ) ) ≠ ∅ ) |
36 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
37 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑐 = 1 ) → 𝑐 = 1 ) |
38 |
37
|
breq2d |
⊢ ( ( 𝜑 ∧ 𝑐 = 1 ) → ( 𝑥 ≤ 𝑐 ↔ 𝑥 ≤ 1 ) ) |
39 |
38
|
ralbidv |
⊢ ( ( 𝜑 ∧ 𝑐 = 1 ) → ( ∀ 𝑥 ∈ ( abs “ ( 𝐹 “ ℝ ) ) 𝑥 ≤ 𝑐 ↔ ∀ 𝑥 ∈ ( abs “ ( 𝐹 “ ℝ ) ) 𝑥 ≤ 1 ) ) |
40 |
1 6
|
extoimad |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( abs “ ( 𝐹 “ ℝ ) ) 𝑥 ≤ 1 ) |
41 |
36 39 40
|
rspcedvd |
⊢ ( 𝜑 → ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ ( abs “ ( 𝐹 “ ℝ ) ) 𝑥 ≤ 𝑐 ) |
42 |
27 35 41
|
suprcld |
⊢ ( 𝜑 → sup ( ( abs “ ( 𝐹 “ ℝ ) ) , ℝ , < ) ∈ ℝ ) |
43 |
|
2re |
⊢ 2 ∈ ℝ |
44 |
43
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ ) |
45 |
5
|
idi |
⊢ ( 𝜑 → ( ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) + ( 𝐹 ‘ ( 𝐴 − 𝐵 ) ) ) = ( 2 · ( ( 𝐹 ‘ 𝐴 ) · ( 𝐺 ‘ 𝐵 ) ) ) ) |
46 |
45
|
fveq2d |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) + ( 𝐹 ‘ ( 𝐴 − 𝐵 ) ) ) ) = ( abs ‘ ( 2 · ( ( 𝐹 ‘ 𝐴 ) · ( 𝐺 ‘ 𝐵 ) ) ) ) ) |
47 |
|
2cnd |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
48 |
47 13
|
mulcld |
⊢ ( 𝜑 → ( 2 · ( ( 𝐹 ‘ 𝐴 ) · ( 𝐺 ‘ 𝐵 ) ) ) ∈ ℂ ) |
49 |
48
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( 2 · ( ( 𝐹 ‘ 𝐴 ) · ( 𝐺 ‘ 𝐵 ) ) ) ) ∈ ℝ ) |
50 |
46 49
|
eqeltrd |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) + ( 𝐹 ‘ ( 𝐴 − 𝐵 ) ) ) ) ∈ ℝ ) |
51 |
1
|
idi |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) |
52 |
3
|
idi |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
53 |
4
|
idi |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
54 |
52 53
|
readdcld |
⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) ∈ ℝ ) |
55 |
51 54
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) ∈ ℝ ) |
56 |
55
|
recnd |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) ∈ ℂ ) |
57 |
56
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) ) ∈ ℝ ) |
58 |
52 53
|
resubcld |
⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) ∈ ℝ ) |
59 |
51 58
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝐴 − 𝐵 ) ) ∈ ℝ ) |
60 |
59
|
recnd |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝐴 − 𝐵 ) ) ∈ ℂ ) |
61 |
60
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( 𝐹 ‘ ( 𝐴 − 𝐵 ) ) ) ∈ ℝ ) |
62 |
57 61
|
readdcld |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) ) + ( abs ‘ ( 𝐹 ‘ ( 𝐴 − 𝐵 ) ) ) ) ∈ ℝ ) |
63 |
44 42
|
remulcld |
⊢ ( 𝜑 → ( 2 · sup ( ( abs “ ( 𝐹 “ ℝ ) ) , ℝ , < ) ) ∈ ℝ ) |
64 |
56 60
|
abstrid |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) + ( 𝐹 ‘ ( 𝐴 − 𝐵 ) ) ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) ) + ( abs ‘ ( 𝐹 ‘ ( 𝐴 − 𝐵 ) ) ) ) ) |
65 |
1 54
|
fvco3d |
⊢ ( 𝜑 → ( ( abs ∘ 𝐹 ) ‘ ( 𝐴 + 𝐵 ) ) = ( abs ‘ ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) ) ) |
66 |
54 24
|
wfximgfd |
⊢ ( 𝜑 → ( ( abs ∘ 𝐹 ) ‘ ( 𝐴 + 𝐵 ) ) ∈ ( ( abs ∘ 𝐹 ) “ ℝ ) ) |
67 |
33
|
idi |
⊢ ( 𝜑 → ( abs “ ( 𝐹 “ ℝ ) ) = ( ( abs ∘ 𝐹 ) “ ℝ ) ) |
68 |
66 67
|
eleqtrrd |
⊢ ( 𝜑 → ( ( abs ∘ 𝐹 ) ‘ ( 𝐴 + 𝐵 ) ) ∈ ( abs “ ( 𝐹 “ ℝ ) ) ) |
69 |
65 68
|
eqeltrrd |
⊢ ( 𝜑 → ( abs ‘ ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) ) ∈ ( abs “ ( 𝐹 “ ℝ ) ) ) |
70 |
27 35 41 69
|
suprubd |
⊢ ( 𝜑 → ( abs ‘ ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) ) ≤ sup ( ( abs “ ( 𝐹 “ ℝ ) ) , ℝ , < ) ) |
71 |
1 58
|
fvco3d |
⊢ ( 𝜑 → ( ( abs ∘ 𝐹 ) ‘ ( 𝐴 − 𝐵 ) ) = ( abs ‘ ( 𝐹 ‘ ( 𝐴 − 𝐵 ) ) ) ) |
72 |
58 24
|
wfximgfd |
⊢ ( 𝜑 → ( ( abs ∘ 𝐹 ) ‘ ( 𝐴 − 𝐵 ) ) ∈ ( ( abs ∘ 𝐹 ) “ ℝ ) ) |
73 |
72 33
|
eleqtrrd |
⊢ ( 𝜑 → ( ( abs ∘ 𝐹 ) ‘ ( 𝐴 − 𝐵 ) ) ∈ ( abs “ ( 𝐹 “ ℝ ) ) ) |
74 |
71 73
|
eqeltrrd |
⊢ ( 𝜑 → ( abs ‘ ( 𝐹 ‘ ( 𝐴 − 𝐵 ) ) ) ∈ ( abs “ ( 𝐹 “ ℝ ) ) ) |
75 |
27 35 41 74
|
suprubd |
⊢ ( 𝜑 → ( abs ‘ ( 𝐹 ‘ ( 𝐴 − 𝐵 ) ) ) ≤ sup ( ( abs “ ( 𝐹 “ ℝ ) ) , ℝ , < ) ) |
76 |
57 61 42 42 70 75
|
le2addd |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) ) + ( abs ‘ ( 𝐹 ‘ ( 𝐴 − 𝐵 ) ) ) ) ≤ ( sup ( ( abs “ ( 𝐹 “ ℝ ) ) , ℝ , < ) + sup ( ( abs “ ( 𝐹 “ ℝ ) ) , ℝ , < ) ) ) |
77 |
42
|
recnd |
⊢ ( 𝜑 → sup ( ( abs “ ( 𝐹 “ ℝ ) ) , ℝ , < ) ∈ ℂ ) |
78 |
77
|
2timesd |
⊢ ( 𝜑 → ( 2 · sup ( ( abs “ ( 𝐹 “ ℝ ) ) , ℝ , < ) ) = ( sup ( ( abs “ ( 𝐹 “ ℝ ) ) , ℝ , < ) + sup ( ( abs “ ( 𝐹 “ ℝ ) ) , ℝ , < ) ) ) |
79 |
78
|
eqcomd |
⊢ ( 𝜑 → ( sup ( ( abs “ ( 𝐹 “ ℝ ) ) , ℝ , < ) + sup ( ( abs “ ( 𝐹 “ ℝ ) ) , ℝ , < ) ) = ( 2 · sup ( ( abs “ ( 𝐹 “ ℝ ) ) , ℝ , < ) ) ) |
80 |
79 63
|
eqeltrd |
⊢ ( 𝜑 → ( sup ( ( abs “ ( 𝐹 “ ℝ ) ) , ℝ , < ) + sup ( ( abs “ ( 𝐹 “ ℝ ) ) , ℝ , < ) ) ∈ ℝ ) |
81 |
76 79 62 80
|
leeq2d |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) ) + ( abs ‘ ( 𝐹 ‘ ( 𝐴 − 𝐵 ) ) ) ) ≤ ( 2 · sup ( ( abs “ ( 𝐹 “ ℝ ) ) , ℝ , < ) ) ) |
82 |
50 62 63 64 81
|
letrd |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) + ( 𝐹 ‘ ( 𝐴 − 𝐵 ) ) ) ) ≤ ( 2 · sup ( ( abs “ ( 𝐹 “ ℝ ) ) , ℝ , < ) ) ) |
83 |
82 46 50 63
|
leeq1d |
⊢ ( 𝜑 → ( abs ‘ ( 2 · ( ( 𝐹 ‘ 𝐴 ) · ( 𝐺 ‘ 𝐵 ) ) ) ) ≤ ( 2 · sup ( ( abs “ ( 𝐹 “ ℝ ) ) , ℝ , < ) ) ) |
84 |
|
0le2 |
⊢ 0 ≤ 2 |
85 |
84
|
a1i |
⊢ ( 𝜑 → 0 ≤ 2 ) |
86 |
7
|
idi |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ∈ ℝ ) |
87 |
10
|
idi |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝐵 ) ∈ ℝ ) |
88 |
86 87
|
remulcld |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) · ( 𝐺 ‘ 𝐵 ) ) ∈ ℝ ) |
89 |
85 44 88
|
absmulrposd |
⊢ ( 𝜑 → ( abs ‘ ( 2 · ( ( 𝐹 ‘ 𝐴 ) · ( 𝐺 ‘ 𝐵 ) ) ) ) = ( 2 · ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) · ( 𝐺 ‘ 𝐵 ) ) ) ) ) |
90 |
83 89 49 63
|
leeq1d |
⊢ ( 𝜑 → ( 2 · ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) · ( 𝐺 ‘ 𝐵 ) ) ) ) ≤ ( 2 · sup ( ( abs “ ( 𝐹 “ ℝ ) ) , ℝ , < ) ) ) |
91 |
|
2pos |
⊢ 0 < 2 |
92 |
91
|
a1i |
⊢ ( 𝜑 → 0 < 2 ) |
93 |
14 42 44 90 92
|
wwlemuld |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) · ( 𝐺 ‘ 𝐵 ) ) ) ≤ sup ( ( abs “ ( 𝐹 “ ℝ ) ) , ℝ , < ) ) |
94 |
8 11
|
absmuld |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) · ( 𝐺 ‘ 𝐵 ) ) ) = ( ( abs ‘ ( 𝐹 ‘ 𝐴 ) ) · ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) ) ) |
95 |
94
|
idi |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) · ( 𝐺 ‘ 𝐵 ) ) ) = ( ( abs ‘ ( 𝐹 ‘ 𝐴 ) ) · ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) ) ) |
96 |
93 95 14 42
|
leeq1d |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐹 ‘ 𝐴 ) ) · ( abs ‘ ( 𝐺 ‘ 𝐵 ) ) ) ≤ sup ( ( abs “ ( 𝐹 “ ℝ ) ) , ℝ , < ) ) |