Metamath Proof Explorer
		
		
		
		Description:  Natural deduction form of lemul2d .  (Contributed by Stanislas Polu, 9-Mar-2020)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | wwlemuld.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
					
						|  |  | wwlemuld.2 | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
					
						|  |  | wwlemuld.3 | ⊢ ( 𝜑  →  𝐶  ∈  ℝ ) | 
					
						|  |  | wwlemuld.4 | ⊢ ( 𝜑  →  ( 𝐶  ·  𝐴 )  ≤  ( 𝐶  ·  𝐵 ) ) | 
					
						|  |  | wwlemuld.5 | ⊢ ( 𝜑  →  0  <  𝐶 ) | 
				
					|  | Assertion | wwlemuld | ⊢  ( 𝜑  →  𝐴  ≤  𝐵 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wwlemuld.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | wwlemuld.2 | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 3 |  | wwlemuld.3 | ⊢ ( 𝜑  →  𝐶  ∈  ℝ ) | 
						
							| 4 |  | wwlemuld.4 | ⊢ ( 𝜑  →  ( 𝐶  ·  𝐴 )  ≤  ( 𝐶  ·  𝐵 ) ) | 
						
							| 5 |  | wwlemuld.5 | ⊢ ( 𝜑  →  0  <  𝐶 ) | 
						
							| 6 | 3 5 | elrpd | ⊢ ( 𝜑  →  𝐶  ∈  ℝ+ ) | 
						
							| 7 | 1 2 6 | lemul2d | ⊢ ( 𝜑  →  ( 𝐴  ≤  𝐵  ↔  ( 𝐶  ·  𝐴 )  ≤  ( 𝐶  ·  𝐵 ) ) ) | 
						
							| 8 | 4 7 | mpbird | ⊢ ( 𝜑  →  𝐴  ≤  𝐵 ) |