Metamath Proof Explorer


Theorem wwlemuld

Description: Natural deduction form of lemul2d . (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypotheses wwlemuld.1 ( 𝜑𝐴 ∈ ℝ )
wwlemuld.2 ( 𝜑𝐵 ∈ ℝ )
wwlemuld.3 ( 𝜑𝐶 ∈ ℝ )
wwlemuld.4 ( 𝜑 → ( 𝐶 · 𝐴 ) ≤ ( 𝐶 · 𝐵 ) )
wwlemuld.5 ( 𝜑 → 0 < 𝐶 )
Assertion wwlemuld ( 𝜑𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 wwlemuld.1 ( 𝜑𝐴 ∈ ℝ )
2 wwlemuld.2 ( 𝜑𝐵 ∈ ℝ )
3 wwlemuld.3 ( 𝜑𝐶 ∈ ℝ )
4 wwlemuld.4 ( 𝜑 → ( 𝐶 · 𝐴 ) ≤ ( 𝐶 · 𝐵 ) )
5 wwlemuld.5 ( 𝜑 → 0 < 𝐶 )
6 3 5 elrpd ( 𝜑𝐶 ∈ ℝ+ )
7 1 2 6 lemul2d ( 𝜑 → ( 𝐴𝐵 ↔ ( 𝐶 · 𝐴 ) ≤ ( 𝐶 · 𝐵 ) ) )
8 4 7 mpbird ( 𝜑𝐴𝐵 )