Metamath Proof Explorer
Description: Natural deduction form of lemul2d . (Contributed by Stanislas Polu, 9-Mar-2020)
|
|
Ref |
Expression |
|
Hypotheses |
wwlemuld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
|
|
wwlemuld.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
|
|
wwlemuld.3 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
|
|
wwlemuld.4 |
⊢ ( 𝜑 → ( 𝐶 · 𝐴 ) ≤ ( 𝐶 · 𝐵 ) ) |
|
|
wwlemuld.5 |
⊢ ( 𝜑 → 0 < 𝐶 ) |
|
Assertion |
wwlemuld |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
wwlemuld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
wwlemuld.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
wwlemuld.3 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
4 |
|
wwlemuld.4 |
⊢ ( 𝜑 → ( 𝐶 · 𝐴 ) ≤ ( 𝐶 · 𝐵 ) ) |
5 |
|
wwlemuld.5 |
⊢ ( 𝜑 → 0 < 𝐶 ) |
6 |
3 5
|
elrpd |
⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) |
7 |
1 2 6
|
lemul2d |
⊢ ( 𝜑 → ( 𝐴 ≤ 𝐵 ↔ ( 𝐶 · 𝐴 ) ≤ ( 𝐶 · 𝐵 ) ) ) |
8 |
4 7
|
mpbird |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |