Metamath Proof Explorer


Theorem wwlemuld

Description: Natural deduction form of lemul2d . (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypotheses wwlemuld.1
|- ( ph -> A e. RR )
wwlemuld.2
|- ( ph -> B e. RR )
wwlemuld.3
|- ( ph -> C e. RR )
wwlemuld.4
|- ( ph -> ( C x. A ) <_ ( C x. B ) )
wwlemuld.5
|- ( ph -> 0 < C )
Assertion wwlemuld
|- ( ph -> A <_ B )

Proof

Step Hyp Ref Expression
1 wwlemuld.1
 |-  ( ph -> A e. RR )
2 wwlemuld.2
 |-  ( ph -> B e. RR )
3 wwlemuld.3
 |-  ( ph -> C e. RR )
4 wwlemuld.4
 |-  ( ph -> ( C x. A ) <_ ( C x. B ) )
5 wwlemuld.5
 |-  ( ph -> 0 < C )
6 3 5 elrpd
 |-  ( ph -> C e. RR+ )
7 1 2 6 lemul2d
 |-  ( ph -> ( A <_ B <-> ( C x. A ) <_ ( C x. B ) ) )
8 4 7 mpbird
 |-  ( ph -> A <_ B )