Description: Natural deduction form of lemul2d . (Contributed by Stanislas Polu, 9-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wwlemuld.1 | |- ( ph -> A e. RR ) | |
| wwlemuld.2 | |- ( ph -> B e. RR ) | ||
| wwlemuld.3 | |- ( ph -> C e. RR ) | ||
| wwlemuld.4 | |- ( ph -> ( C x. A ) <_ ( C x. B ) ) | ||
| wwlemuld.5 | |- ( ph -> 0 < C ) | ||
| Assertion | wwlemuld | |- ( ph -> A <_ B ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | wwlemuld.1 | |- ( ph -> A e. RR ) | |
| 2 | wwlemuld.2 | |- ( ph -> B e. RR ) | |
| 3 | wwlemuld.3 | |- ( ph -> C e. RR ) | |
| 4 | wwlemuld.4 | |- ( ph -> ( C x. A ) <_ ( C x. B ) ) | |
| 5 | wwlemuld.5 | |- ( ph -> 0 < C ) | |
| 6 | 3 5 | elrpd | |- ( ph -> C e. RR+ ) | 
| 7 | 1 2 6 | lemul2d | |- ( ph -> ( A <_ B <-> ( C x. A ) <_ ( C x. B ) ) ) | 
| 8 | 4 7 | mpbird | |- ( ph -> A <_ B ) |