Description: Specialization of absmuld with absidd . (Contributed by Stanislas Polu, 9-Mar-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | absmulrposd.1 | ⊢ ( 𝜑 → 0 ≤ 𝐴 ) | |
absmulrposd.2 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | ||
absmulrposd.3 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
Assertion | absmulrposd | ⊢ ( 𝜑 → ( abs ‘ ( 𝐴 · 𝐵 ) ) = ( 𝐴 · ( abs ‘ 𝐵 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | absmulrposd.1 | ⊢ ( 𝜑 → 0 ≤ 𝐴 ) | |
2 | absmulrposd.2 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
3 | absmulrposd.3 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
4 | 2 | recnd | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
5 | 3 | recnd | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
6 | 4 5 | absmuld | ⊢ ( 𝜑 → ( abs ‘ ( 𝐴 · 𝐵 ) ) = ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐵 ) ) ) |
7 | 2 1 | absidd | ⊢ ( 𝜑 → ( abs ‘ 𝐴 ) = 𝐴 ) |
8 | 7 | oveq1d | ⊢ ( 𝜑 → ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐵 ) ) = ( 𝐴 · ( abs ‘ 𝐵 ) ) ) |
9 | 6 8 | eqtrd | ⊢ ( 𝜑 → ( abs ‘ ( 𝐴 · 𝐵 ) ) = ( 𝐴 · ( abs ‘ 𝐵 ) ) ) |