Description: Specialization of absmuld with absidd . (Contributed by Stanislas Polu, 9-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | absmulrposd.1 | ⊢ ( 𝜑 → 0 ≤ 𝐴 ) | |
| absmulrposd.2 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | ||
| absmulrposd.3 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| Assertion | absmulrposd | ⊢ ( 𝜑 → ( abs ‘ ( 𝐴 · 𝐵 ) ) = ( 𝐴 · ( abs ‘ 𝐵 ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | absmulrposd.1 | ⊢ ( 𝜑 → 0 ≤ 𝐴 ) | |
| 2 | absmulrposd.2 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 3 | absmulrposd.3 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 4 | 2 | recnd | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | 
| 5 | 3 | recnd | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | 
| 6 | 4 5 | absmuld | ⊢ ( 𝜑 → ( abs ‘ ( 𝐴 · 𝐵 ) ) = ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐵 ) ) ) | 
| 7 | 2 1 | absidd | ⊢ ( 𝜑 → ( abs ‘ 𝐴 ) = 𝐴 ) | 
| 8 | 7 | oveq1d | ⊢ ( 𝜑 → ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐵 ) ) = ( 𝐴 · ( abs ‘ 𝐵 ) ) ) | 
| 9 | 6 8 | eqtrd | ⊢ ( 𝜑 → ( abs ‘ ( 𝐴 · 𝐵 ) ) = ( 𝐴 · ( abs ‘ 𝐵 ) ) ) |