Metamath Proof Explorer


Theorem absmulrposd

Description: Specialization of absmuld with absidd . (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypotheses absmulrposd.1 ( 𝜑 → 0 ≤ 𝐴 )
absmulrposd.2 ( 𝜑𝐴 ∈ ℝ )
absmulrposd.3 ( 𝜑𝐵 ∈ ℝ )
Assertion absmulrposd ( 𝜑 → ( abs ‘ ( 𝐴 · 𝐵 ) ) = ( 𝐴 · ( abs ‘ 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 absmulrposd.1 ( 𝜑 → 0 ≤ 𝐴 )
2 absmulrposd.2 ( 𝜑𝐴 ∈ ℝ )
3 absmulrposd.3 ( 𝜑𝐵 ∈ ℝ )
4 2 recnd ( 𝜑𝐴 ∈ ℂ )
5 3 recnd ( 𝜑𝐵 ∈ ℂ )
6 4 5 absmuld ( 𝜑 → ( abs ‘ ( 𝐴 · 𝐵 ) ) = ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐵 ) ) )
7 2 1 absidd ( 𝜑 → ( abs ‘ 𝐴 ) = 𝐴 )
8 7 oveq1d ( 𝜑 → ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐵 ) ) = ( 𝐴 · ( abs ‘ 𝐵 ) ) )
9 6 8 eqtrd ( 𝜑 → ( abs ‘ ( 𝐴 · 𝐵 ) ) = ( 𝐴 · ( abs ‘ 𝐵 ) ) )