Metamath Proof Explorer


Theorem imadisjld

Description: Natural dduction form of one side of imadisj . (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypothesis imadisjld.1 ( 𝜑 → ( dom 𝐴𝐵 ) = ∅ )
Assertion imadisjld ( 𝜑 → ( 𝐴𝐵 ) = ∅ )

Proof

Step Hyp Ref Expression
1 imadisjld.1 ( 𝜑 → ( dom 𝐴𝐵 ) = ∅ )
2 imadisj ( ( 𝐴𝐵 ) = ∅ ↔ ( dom 𝐴𝐵 ) = ∅ )
3 1 2 sylibr ( 𝜑 → ( 𝐴𝐵 ) = ∅ )