Metamath Proof Explorer
Description: Natural dduction form of one side of imadisj . (Contributed by Stanislas Polu, 9-Mar-2020)
|
|
Ref |
Expression |
|
Hypothesis |
imadisjld.1 |
⊢ ( 𝜑 → ( dom 𝐴 ∩ 𝐵 ) = ∅ ) |
|
Assertion |
imadisjld |
⊢ ( 𝜑 → ( 𝐴 “ 𝐵 ) = ∅ ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
imadisjld.1 |
⊢ ( 𝜑 → ( dom 𝐴 ∩ 𝐵 ) = ∅ ) |
2 |
|
imadisj |
⊢ ( ( 𝐴 “ 𝐵 ) = ∅ ↔ ( dom 𝐴 ∩ 𝐵 ) = ∅ ) |
3 |
1 2
|
sylibr |
⊢ ( 𝜑 → ( 𝐴 “ 𝐵 ) = ∅ ) |