Metamath Proof Explorer


Theorem imadisjld

Description: Natural dduction form of one side of imadisj . (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypothesis imadisjld.1
|- ( ph -> ( dom A i^i B ) = (/) )
Assertion imadisjld
|- ( ph -> ( A " B ) = (/) )

Proof

Step Hyp Ref Expression
1 imadisjld.1
 |-  ( ph -> ( dom A i^i B ) = (/) )
2 imadisj
 |-  ( ( A " B ) = (/) <-> ( dom A i^i B ) = (/) )
3 1 2 sylibr
 |-  ( ph -> ( A " B ) = (/) )