Description: Natural dduction form of one side of imadisj . (Contributed by Stanislas Polu, 9-Mar-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | imadisjld.1 | |- ( ph -> ( dom A i^i B ) = (/) ) |
|
Assertion | imadisjld | |- ( ph -> ( A " B ) = (/) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imadisjld.1 | |- ( ph -> ( dom A i^i B ) = (/) ) |
|
2 | imadisj | |- ( ( A " B ) = (/) <-> ( dom A i^i B ) = (/) ) |
|
3 | 1 2 | sylibr | |- ( ph -> ( A " B ) = (/) ) |