Description: Natural dduction form of one side of imadisj . (Contributed by Stanislas Polu, 9-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | imadisjld.1 | |- ( ph -> ( dom A i^i B ) = (/) ) |
|
| Assertion | imadisjld | |- ( ph -> ( A " B ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imadisjld.1 | |- ( ph -> ( dom A i^i B ) = (/) ) |
|
| 2 | imadisj | |- ( ( A " B ) = (/) <-> ( dom A i^i B ) = (/) ) |
|
| 3 | 1 2 | sylibr | |- ( ph -> ( A " B ) = (/) ) |