Metamath Proof Explorer


Theorem imadisjld

Description: Natural dduction form of one side of imadisj . (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypothesis imadisjld.1 φdomAB=
Assertion imadisjld φAB=

Proof

Step Hyp Ref Expression
1 imadisjld.1 φdomAB=
2 imadisj AB=domAB=
3 1 2 sylibr φAB=