Metamath Proof Explorer


Theorem imadisjld

Description: Natural dduction form of one side of imadisj . (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypothesis imadisjld.1 φ dom A B =
Assertion imadisjld φ A B =

Proof

Step Hyp Ref Expression
1 imadisjld.1 φ dom A B =
2 imadisj A B = dom A B =
3 1 2 sylibr φ A B =