Metamath Proof Explorer


Theorem imadisjlnd

Description: Natural deduction form of one negated side of imadisj . (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypothesis imadisjlnd.1 ( 𝜑 → ( dom 𝐴𝐵 ) ≠ ∅ )
Assertion imadisjlnd ( 𝜑 → ( 𝐴𝐵 ) ≠ ∅ )

Proof

Step Hyp Ref Expression
1 imadisjlnd.1 ( 𝜑 → ( dom 𝐴𝐵 ) ≠ ∅ )
2 imadisj ( ( 𝐴𝐵 ) = ∅ ↔ ( dom 𝐴𝐵 ) = ∅ )
3 2 biimpi ( ( 𝐴𝐵 ) = ∅ → ( dom 𝐴𝐵 ) = ∅ )
4 3 necon3i ( ( dom 𝐴𝐵 ) ≠ ∅ → ( 𝐴𝐵 ) ≠ ∅ )
5 1 4 syl ( 𝜑 → ( 𝐴𝐵 ) ≠ ∅ )