Step |
Hyp |
Ref |
Expression |
1 |
|
extoimad.1 |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) |
2 |
|
extoimad.2 |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ℝ ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝐶 ) |
3 |
1
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
4 |
3
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝐹 ‘ 𝑦 ) ∈ ℂ ) |
5 |
4
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ∈ ℝ ) |
6 |
|
imaco |
⊢ ( ( abs ∘ 𝐹 ) “ ℝ ) = ( abs “ ( 𝐹 “ ℝ ) ) |
7 |
6
|
a1i |
⊢ ( 𝜑 → ( ( abs ∘ 𝐹 ) “ ℝ ) = ( abs “ ( 𝐹 “ ℝ ) ) ) |
8 |
7
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ( abs ∘ 𝐹 ) “ ℝ ) ↔ 𝑥 ∈ ( abs “ ( 𝐹 “ ℝ ) ) ) ) |
9 |
|
absf |
⊢ abs : ℂ ⟶ ℝ |
10 |
9
|
a1i |
⊢ ( 𝜑 → abs : ℂ ⟶ ℝ ) |
11 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
12 |
11
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
13 |
10 12
|
fssresd |
⊢ ( 𝜑 → ( abs ↾ ℝ ) : ℝ ⟶ ℝ ) |
14 |
1 13
|
fco2d |
⊢ ( 𝜑 → ( abs ∘ 𝐹 ) : ℝ ⟶ ℝ ) |
15 |
14
|
ffnd |
⊢ ( 𝜑 → ( abs ∘ 𝐹 ) Fn ℝ ) |
16 |
|
ssidd |
⊢ ( 𝜑 → ℝ ⊆ ℝ ) |
17 |
15 16
|
fvelimabd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ( abs ∘ 𝐹 ) “ ℝ ) ↔ ∃ 𝑦 ∈ ℝ ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) = 𝑥 ) ) |
18 |
|
eqcom |
⊢ ( ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) = 𝑥 ↔ 𝑥 = ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) ) |
19 |
18
|
a1i |
⊢ ( 𝜑 → ( ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) = 𝑥 ↔ 𝑥 = ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) ) ) |
20 |
19
|
rexbidv |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) = 𝑥 ↔ ∃ 𝑦 ∈ ℝ 𝑥 = ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) ) ) |
21 |
17 20
|
bitrd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ( abs ∘ 𝐹 ) “ ℝ ) ↔ ∃ 𝑦 ∈ ℝ 𝑥 = ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) ) ) |
22 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝐹 : ℝ ⟶ ℝ ) |
23 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℝ ) |
24 |
22 23
|
fvco3d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) = ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ) |
25 |
24
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) = ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) ) |
26 |
25
|
eqeq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝑥 = ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ↔ 𝑥 = ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) ) ) |
27 |
26
|
rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ℝ 𝑥 = ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ↔ ∃ 𝑦 ∈ ℝ 𝑥 = ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) ) ) |
28 |
21 27
|
bitr4d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ( abs ∘ 𝐹 ) “ ℝ ) ↔ ∃ 𝑦 ∈ ℝ 𝑥 = ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) |
29 |
8 28
|
bitr3d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( abs “ ( 𝐹 “ ℝ ) ) ↔ ∃ 𝑦 ∈ ℝ 𝑥 = ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) |
30 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 = ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ) → 𝑥 = ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ) |
31 |
30
|
breq1d |
⊢ ( ( 𝜑 ∧ 𝑥 = ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝑥 ≤ 𝐶 ↔ ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝐶 ) ) |
32 |
5 29 31
|
ralxfr2d |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ( abs “ ( 𝐹 “ ℝ ) ) 𝑥 ≤ 𝐶 ↔ ∀ 𝑦 ∈ ℝ ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝐶 ) ) |
33 |
2 32
|
mpbird |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( abs “ ( 𝐹 “ ℝ ) ) 𝑥 ≤ 𝐶 ) |