| Step | Hyp | Ref | Expression | 
						
							| 1 |  | extoimad.1 | ⊢ ( 𝜑  →  𝐹 : ℝ ⟶ ℝ ) | 
						
							| 2 |  | extoimad.2 | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  ℝ ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝐶 ) | 
						
							| 3 | 1 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  ( 𝐹 ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 4 | 3 | recnd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  ( 𝐹 ‘ 𝑦 )  ∈  ℂ ) | 
						
							| 5 | 4 | abscld | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ∈  ℝ ) | 
						
							| 6 |  | imaco | ⊢ ( ( abs  ∘  𝐹 )  “  ℝ )  =  ( abs  “  ( 𝐹  “  ℝ ) ) | 
						
							| 7 | 6 | a1i | ⊢ ( 𝜑  →  ( ( abs  ∘  𝐹 )  “  ℝ )  =  ( abs  “  ( 𝐹  “  ℝ ) ) ) | 
						
							| 8 | 7 | eleq2d | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( ( abs  ∘  𝐹 )  “  ℝ )  ↔  𝑥  ∈  ( abs  “  ( 𝐹  “  ℝ ) ) ) ) | 
						
							| 9 |  | absf | ⊢ abs : ℂ ⟶ ℝ | 
						
							| 10 | 9 | a1i | ⊢ ( 𝜑  →  abs : ℂ ⟶ ℝ ) | 
						
							| 11 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 12 | 11 | a1i | ⊢ ( 𝜑  →  ℝ  ⊆  ℂ ) | 
						
							| 13 | 10 12 | fssresd | ⊢ ( 𝜑  →  ( abs  ↾  ℝ ) : ℝ ⟶ ℝ ) | 
						
							| 14 | 1 13 | fco2d | ⊢ ( 𝜑  →  ( abs  ∘  𝐹 ) : ℝ ⟶ ℝ ) | 
						
							| 15 | 14 | ffnd | ⊢ ( 𝜑  →  ( abs  ∘  𝐹 )  Fn  ℝ ) | 
						
							| 16 |  | ssidd | ⊢ ( 𝜑  →  ℝ  ⊆  ℝ ) | 
						
							| 17 | 15 16 | fvelimabd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( ( abs  ∘  𝐹 )  “  ℝ )  ↔  ∃ 𝑦  ∈  ℝ ( ( abs  ∘  𝐹 ) ‘ 𝑦 )  =  𝑥 ) ) | 
						
							| 18 |  | eqcom | ⊢ ( ( ( abs  ∘  𝐹 ) ‘ 𝑦 )  =  𝑥  ↔  𝑥  =  ( ( abs  ∘  𝐹 ) ‘ 𝑦 ) ) | 
						
							| 19 | 18 | a1i | ⊢ ( 𝜑  →  ( ( ( abs  ∘  𝐹 ) ‘ 𝑦 )  =  𝑥  ↔  𝑥  =  ( ( abs  ∘  𝐹 ) ‘ 𝑦 ) ) ) | 
						
							| 20 | 19 | rexbidv | ⊢ ( 𝜑  →  ( ∃ 𝑦  ∈  ℝ ( ( abs  ∘  𝐹 ) ‘ 𝑦 )  =  𝑥  ↔  ∃ 𝑦  ∈  ℝ 𝑥  =  ( ( abs  ∘  𝐹 ) ‘ 𝑦 ) ) ) | 
						
							| 21 | 17 20 | bitrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( ( abs  ∘  𝐹 )  “  ℝ )  ↔  ∃ 𝑦  ∈  ℝ 𝑥  =  ( ( abs  ∘  𝐹 ) ‘ 𝑦 ) ) ) | 
						
							| 22 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  𝐹 : ℝ ⟶ ℝ ) | 
						
							| 23 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  𝑦  ∈  ℝ ) | 
						
							| 24 | 22 23 | fvco3d | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  ( ( abs  ∘  𝐹 ) ‘ 𝑦 )  =  ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 25 | 24 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  =  ( ( abs  ∘  𝐹 ) ‘ 𝑦 ) ) | 
						
							| 26 | 25 | eqeq2d | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  ( 𝑥  =  ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ↔  𝑥  =  ( ( abs  ∘  𝐹 ) ‘ 𝑦 ) ) ) | 
						
							| 27 | 26 | rexbidva | ⊢ ( 𝜑  →  ( ∃ 𝑦  ∈  ℝ 𝑥  =  ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ↔  ∃ 𝑦  ∈  ℝ 𝑥  =  ( ( abs  ∘  𝐹 ) ‘ 𝑦 ) ) ) | 
						
							| 28 | 21 27 | bitr4d | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( ( abs  ∘  𝐹 )  “  ℝ )  ↔  ∃ 𝑦  ∈  ℝ 𝑥  =  ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 29 | 8 28 | bitr3d | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( abs  “  ( 𝐹  “  ℝ ) )  ↔  ∃ 𝑦  ∈  ℝ 𝑥  =  ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 30 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  =  ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) )  →  𝑥  =  ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 31 | 30 | breq1d | ⊢ ( ( 𝜑  ∧  𝑥  =  ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) )  →  ( 𝑥  ≤  𝐶  ↔  ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝐶 ) ) | 
						
							| 32 | 5 29 31 | ralxfr2d | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  ( abs  “  ( 𝐹  “  ℝ ) ) 𝑥  ≤  𝐶  ↔  ∀ 𝑦  ∈  ℝ ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝐶 ) ) | 
						
							| 33 | 2 32 | mpbird | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ( abs  “  ( 𝐹  “  ℝ ) ) 𝑥  ≤  𝐶 ) |