Metamath Proof Explorer


Theorem symgga

Description: The symmetric group induces a group action on its base set. (Contributed by Mario Carneiro, 24-Jan-2015)

Ref Expression
Hypotheses symgga.g
|- G = ( SymGrp ` X )
symgga.b
|- B = ( Base ` G )
symgga.f
|- F = ( f e. B , x e. X |-> ( f ` x ) )
Assertion symgga
|- ( X e. V -> F e. ( G GrpAct X ) )

Proof

Step Hyp Ref Expression
1 symgga.g
 |-  G = ( SymGrp ` X )
2 symgga.b
 |-  B = ( Base ` G )
3 symgga.f
 |-  F = ( f e. B , x e. X |-> ( f ` x ) )
4 1 symggrp
 |-  ( X e. V -> G e. Grp )
5 2 idghm
 |-  ( G e. Grp -> ( _I |` B ) e. ( G GrpHom G ) )
6 fvresi
 |-  ( f e. B -> ( ( _I |` B ) ` f ) = f )
7 6 adantr
 |-  ( ( f e. B /\ x e. X ) -> ( ( _I |` B ) ` f ) = f )
8 7 fveq1d
 |-  ( ( f e. B /\ x e. X ) -> ( ( ( _I |` B ) ` f ) ` x ) = ( f ` x ) )
9 8 mpoeq3ia
 |-  ( f e. B , x e. X |-> ( ( ( _I |` B ) ` f ) ` x ) ) = ( f e. B , x e. X |-> ( f ` x ) )
10 3 9 eqtr4i
 |-  F = ( f e. B , x e. X |-> ( ( ( _I |` B ) ` f ) ` x ) )
11 2 1 10 lactghmga
 |-  ( ( _I |` B ) e. ( G GrpHom G ) -> F e. ( G GrpAct X ) )
12 4 5 11 3syl
 |-  ( X e. V -> F e. ( G GrpAct X ) )