| Step |
Hyp |
Ref |
Expression |
| 1 |
|
symgga.g |
|- G = ( SymGrp ` X ) |
| 2 |
|
symgga.b |
|- B = ( Base ` G ) |
| 3 |
|
symgga.f |
|- F = ( f e. B , x e. X |-> ( f ` x ) ) |
| 4 |
1
|
symggrp |
|- ( X e. V -> G e. Grp ) |
| 5 |
2
|
idghm |
|- ( G e. Grp -> ( _I |` B ) e. ( G GrpHom G ) ) |
| 6 |
|
fvresi |
|- ( f e. B -> ( ( _I |` B ) ` f ) = f ) |
| 7 |
6
|
adantr |
|- ( ( f e. B /\ x e. X ) -> ( ( _I |` B ) ` f ) = f ) |
| 8 |
7
|
fveq1d |
|- ( ( f e. B /\ x e. X ) -> ( ( ( _I |` B ) ` f ) ` x ) = ( f ` x ) ) |
| 9 |
8
|
mpoeq3ia |
|- ( f e. B , x e. X |-> ( ( ( _I |` B ) ` f ) ` x ) ) = ( f e. B , x e. X |-> ( f ` x ) ) |
| 10 |
3 9
|
eqtr4i |
|- F = ( f e. B , x e. X |-> ( ( ( _I |` B ) ` f ) ` x ) ) |
| 11 |
2 1 10
|
lactghmga |
|- ( ( _I |` B ) e. ( G GrpHom G ) -> F e. ( G GrpAct X ) ) |
| 12 |
4 5 11
|
3syl |
|- ( X e. V -> F e. ( G GrpAct X ) ) |