Description: The topology of the symmetric group on A . (Contributed by Mario Carneiro, 29-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symgga.g | |- G = ( SymGrp ` X ) |
|
| symgga.b | |- B = ( Base ` G ) |
||
| Assertion | symgtopn | |- ( X e. V -> ( ( Xt_ ` ( X X. { ~P X } ) ) |`t B ) = ( TopOpen ` G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgga.g | |- G = ( SymGrp ` X ) |
|
| 2 | symgga.b | |- B = ( Base ` G ) |
|
| 3 | 1 | symgtset | |- ( X e. V -> ( Xt_ ` ( X X. { ~P X } ) ) = ( TopSet ` G ) ) |
| 4 | 3 | oveq1d | |- ( X e. V -> ( ( Xt_ ` ( X X. { ~P X } ) ) |`t B ) = ( ( TopSet ` G ) |`t B ) ) |
| 5 | eqid | |- ( TopSet ` G ) = ( TopSet ` G ) |
|
| 6 | 2 5 | topnval | |- ( ( TopSet ` G ) |`t B ) = ( TopOpen ` G ) |
| 7 | 4 6 | eqtrdi | |- ( X e. V -> ( ( Xt_ ` ( X X. { ~P X } ) ) |`t B ) = ( TopOpen ` G ) ) |