Metamath Proof Explorer


Theorem symgtopn

Description: The topology of the symmetric group on A . (Contributed by Mario Carneiro, 29-Aug-2015)

Ref Expression
Hypotheses symgga.g
|- G = ( SymGrp ` X )
symgga.b
|- B = ( Base ` G )
Assertion symgtopn
|- ( X e. V -> ( ( Xt_ ` ( X X. { ~P X } ) ) |`t B ) = ( TopOpen ` G ) )

Proof

Step Hyp Ref Expression
1 symgga.g
 |-  G = ( SymGrp ` X )
2 symgga.b
 |-  B = ( Base ` G )
3 1 symgtset
 |-  ( X e. V -> ( Xt_ ` ( X X. { ~P X } ) ) = ( TopSet ` G ) )
4 3 oveq1d
 |-  ( X e. V -> ( ( Xt_ ` ( X X. { ~P X } ) ) |`t B ) = ( ( TopSet ` G ) |`t B ) )
5 eqid
 |-  ( TopSet ` G ) = ( TopSet ` G )
6 2 5 topnval
 |-  ( ( TopSet ` G ) |`t B ) = ( TopOpen ` G )
7 4 6 eqtrdi
 |-  ( X e. V -> ( ( Xt_ ` ( X X. { ~P X } ) ) |`t B ) = ( TopOpen ` G ) )