Metamath Proof Explorer


Theorem telgsumfz0s

Description: Telescoping finite group sum ranging over nonnegative integers, using explicit substitution. (Contributed by AV, 24-Oct-2019) (Proof shortened by AV, 25-Nov-2019)

Ref Expression
Hypotheses telgsumfz0s.b
|- B = ( Base ` G )
telgsumfz0s.g
|- ( ph -> G e. Abel )
telgsumfz0s.m
|- .- = ( -g ` G )
telgsumfz0s.s
|- ( ph -> S e. NN0 )
telgsumfz0s.f
|- ( ph -> A. k e. ( 0 ... ( S + 1 ) ) C e. B )
Assertion telgsumfz0s
|- ( ph -> ( G gsum ( i e. ( 0 ... S ) |-> ( [_ i / k ]_ C .- [_ ( i + 1 ) / k ]_ C ) ) ) = ( [_ 0 / k ]_ C .- [_ ( S + 1 ) / k ]_ C ) )

Proof

Step Hyp Ref Expression
1 telgsumfz0s.b
 |-  B = ( Base ` G )
2 telgsumfz0s.g
 |-  ( ph -> G e. Abel )
3 telgsumfz0s.m
 |-  .- = ( -g ` G )
4 telgsumfz0s.s
 |-  ( ph -> S e. NN0 )
5 telgsumfz0s.f
 |-  ( ph -> A. k e. ( 0 ... ( S + 1 ) ) C e. B )
6 nn0uz
 |-  NN0 = ( ZZ>= ` 0 )
7 4 6 eleqtrdi
 |-  ( ph -> S e. ( ZZ>= ` 0 ) )
8 1 2 3 7 5 telgsumfzs
 |-  ( ph -> ( G gsum ( i e. ( 0 ... S ) |-> ( [_ i / k ]_ C .- [_ ( i + 1 ) / k ]_ C ) ) ) = ( [_ 0 / k ]_ C .- [_ ( S + 1 ) / k ]_ C ) )