Metamath Proof Explorer


Theorem telgsumfz0s

Description: Telescoping finite group sum ranging over nonnegative integers, using explicit substitution. (Contributed by AV, 24-Oct-2019) (Proof shortened by AV, 25-Nov-2019)

Ref Expression
Hypotheses telgsumfz0s.b 𝐵 = ( Base ‘ 𝐺 )
telgsumfz0s.g ( 𝜑𝐺 ∈ Abel )
telgsumfz0s.m = ( -g𝐺 )
telgsumfz0s.s ( 𝜑𝑆 ∈ ℕ0 )
telgsumfz0s.f ( 𝜑 → ∀ 𝑘 ∈ ( 0 ... ( 𝑆 + 1 ) ) 𝐶𝐵 )
Assertion telgsumfz0s ( 𝜑 → ( 𝐺 Σg ( 𝑖 ∈ ( 0 ... 𝑆 ) ↦ ( 𝑖 / 𝑘 𝐶 ( 𝑖 + 1 ) / 𝑘 𝐶 ) ) ) = ( 0 / 𝑘 𝐶 ( 𝑆 + 1 ) / 𝑘 𝐶 ) )

Proof

Step Hyp Ref Expression
1 telgsumfz0s.b 𝐵 = ( Base ‘ 𝐺 )
2 telgsumfz0s.g ( 𝜑𝐺 ∈ Abel )
3 telgsumfz0s.m = ( -g𝐺 )
4 telgsumfz0s.s ( 𝜑𝑆 ∈ ℕ0 )
5 telgsumfz0s.f ( 𝜑 → ∀ 𝑘 ∈ ( 0 ... ( 𝑆 + 1 ) ) 𝐶𝐵 )
6 nn0uz 0 = ( ℤ ‘ 0 )
7 4 6 eleqtrdi ( 𝜑𝑆 ∈ ( ℤ ‘ 0 ) )
8 1 2 3 7 5 telgsumfzs ( 𝜑 → ( 𝐺 Σg ( 𝑖 ∈ ( 0 ... 𝑆 ) ↦ ( 𝑖 / 𝑘 𝐶 ( 𝑖 + 1 ) / 𝑘 𝐶 ) ) ) = ( 0 / 𝑘 𝐶 ( 𝑆 + 1 ) / 𝑘 𝐶 ) )