| Step |
Hyp |
Ref |
Expression |
| 1 |
|
telgsumfz0.k |
⊢ 𝐾 = ( Base ‘ 𝐺 ) |
| 2 |
|
telgsumfz0.g |
⊢ ( 𝜑 → 𝐺 ∈ Abel ) |
| 3 |
|
telgsumfz0.m |
⊢ − = ( -g ‘ 𝐺 ) |
| 4 |
|
telgsumfz0.s |
⊢ ( 𝜑 → 𝑆 ∈ ℕ0 ) |
| 5 |
|
telgsumfz0.f |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ... ( 𝑆 + 1 ) ) 𝐴 ∈ 𝐾 ) |
| 6 |
|
telgsumfz0.a |
⊢ ( 𝑘 = 𝑖 → 𝐴 = 𝐵 ) |
| 7 |
|
telgsumfz0.c |
⊢ ( 𝑘 = ( 𝑖 + 1 ) → 𝐴 = 𝐶 ) |
| 8 |
|
telgsumfz0.d |
⊢ ( 𝑘 = 0 → 𝐴 = 𝐷 ) |
| 9 |
|
telgsumfz0.e |
⊢ ( 𝑘 = ( 𝑆 + 1 ) → 𝐴 = 𝐸 ) |
| 10 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑆 ) ) → 𝑖 ∈ ( 0 ... 𝑆 ) ) |
| 11 |
6
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑆 ) ) ∧ 𝑘 = 𝑖 ) → 𝐴 = 𝐵 ) |
| 12 |
10 11
|
csbied |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑆 ) ) → ⦋ 𝑖 / 𝑘 ⦌ 𝐴 = 𝐵 ) |
| 13 |
12
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑆 ) ) → 𝐵 = ⦋ 𝑖 / 𝑘 ⦌ 𝐴 ) |
| 14 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑆 ) ) → ( 𝑖 + 1 ) ∈ V ) |
| 15 |
7
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑆 ) ) ∧ 𝑘 = ( 𝑖 + 1 ) ) → 𝐴 = 𝐶 ) |
| 16 |
14 15
|
csbied |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑆 ) ) → ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐴 = 𝐶 ) |
| 17 |
16
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑆 ) ) → 𝐶 = ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐴 ) |
| 18 |
13 17
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑆 ) ) → ( 𝐵 − 𝐶 ) = ( ⦋ 𝑖 / 𝑘 ⦌ 𝐴 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐴 ) ) |
| 19 |
18
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑖 ∈ ( 0 ... 𝑆 ) ↦ ( 𝐵 − 𝐶 ) ) = ( 𝑖 ∈ ( 0 ... 𝑆 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐴 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐴 ) ) ) |
| 20 |
19
|
oveq2d |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑖 ∈ ( 0 ... 𝑆 ) ↦ ( 𝐵 − 𝐶 ) ) ) = ( 𝐺 Σg ( 𝑖 ∈ ( 0 ... 𝑆 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐴 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐴 ) ) ) ) |
| 21 |
1 2 3 4 5
|
telgsumfz0s |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑖 ∈ ( 0 ... 𝑆 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐴 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐴 ) ) ) = ( ⦋ 0 / 𝑘 ⦌ 𝐴 − ⦋ ( 𝑆 + 1 ) / 𝑘 ⦌ 𝐴 ) ) |
| 22 |
|
c0ex |
⊢ 0 ∈ V |
| 23 |
22
|
a1i |
⊢ ( 𝜑 → 0 ∈ V ) |
| 24 |
8
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 = 0 ) → 𝐴 = 𝐷 ) |
| 25 |
23 24
|
csbied |
⊢ ( 𝜑 → ⦋ 0 / 𝑘 ⦌ 𝐴 = 𝐷 ) |
| 26 |
|
ovexd |
⊢ ( 𝜑 → ( 𝑆 + 1 ) ∈ V ) |
| 27 |
9
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 = ( 𝑆 + 1 ) ) → 𝐴 = 𝐸 ) |
| 28 |
26 27
|
csbied |
⊢ ( 𝜑 → ⦋ ( 𝑆 + 1 ) / 𝑘 ⦌ 𝐴 = 𝐸 ) |
| 29 |
25 28
|
oveq12d |
⊢ ( 𝜑 → ( ⦋ 0 / 𝑘 ⦌ 𝐴 − ⦋ ( 𝑆 + 1 ) / 𝑘 ⦌ 𝐴 ) = ( 𝐷 − 𝐸 ) ) |
| 30 |
20 21 29
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑖 ∈ ( 0 ... 𝑆 ) ↦ ( 𝐵 − 𝐶 ) ) ) = ( 𝐷 − 𝐸 ) ) |