| Step |
Hyp |
Ref |
Expression |
| 1 |
|
telgsumfz0.k |
|
| 2 |
|
telgsumfz0.g |
|
| 3 |
|
telgsumfz0.m |
|
| 4 |
|
telgsumfz0.s |
|
| 5 |
|
telgsumfz0.f |
|
| 6 |
|
telgsumfz0.a |
|
| 7 |
|
telgsumfz0.c |
|
| 8 |
|
telgsumfz0.d |
|
| 9 |
|
telgsumfz0.e |
|
| 10 |
|
simpr |
|
| 11 |
6
|
adantl |
|
| 12 |
10 11
|
csbied |
|
| 13 |
12
|
eqcomd |
|
| 14 |
|
ovexd |
|
| 15 |
7
|
adantl |
|
| 16 |
14 15
|
csbied |
|
| 17 |
16
|
eqcomd |
|
| 18 |
13 17
|
oveq12d |
|
| 19 |
18
|
mpteq2dva |
|
| 20 |
19
|
oveq2d |
|
| 21 |
1 2 3 4 5
|
telgsumfz0s |
|
| 22 |
|
c0ex |
|
| 23 |
22
|
a1i |
|
| 24 |
8
|
adantl |
|
| 25 |
23 24
|
csbied |
|
| 26 |
|
ovexd |
|
| 27 |
9
|
adantl |
|
| 28 |
26 27
|
csbied |
|
| 29 |
25 28
|
oveq12d |
|
| 30 |
20 21 29
|
3eqtrd |
|