| Step |
Hyp |
Ref |
Expression |
| 1 |
|
telgsums.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
telgsums.g |
⊢ ( 𝜑 → 𝐺 ∈ Abel ) |
| 3 |
|
telgsums.m |
⊢ − = ( -g ‘ 𝐺 ) |
| 4 |
|
telgsums.0 |
⊢ 0 = ( 0g ‘ 𝐺 ) |
| 5 |
|
telgsums.f |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ0 𝐶 ∈ 𝐵 ) |
| 6 |
|
telgsums.s |
⊢ ( 𝜑 → 𝑆 ∈ ℕ0 ) |
| 7 |
|
telgsums.u |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ0 ( 𝑆 < 𝑘 → 𝐶 = 0 ) ) |
| 8 |
|
ablcmn |
⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ CMnd ) |
| 9 |
2 8
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
| 10 |
|
ablgrp |
⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) |
| 11 |
2 10
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝐺 ∈ Grp ) |
| 13 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝑖 ∈ ℕ0 ) |
| 14 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ∀ 𝑘 ∈ ℕ0 𝐶 ∈ 𝐵 ) |
| 15 |
|
rspcsbela |
⊢ ( ( 𝑖 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ℕ0 𝐶 ∈ 𝐵 ) → ⦋ 𝑖 / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) |
| 16 |
13 14 15
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ⦋ 𝑖 / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) |
| 17 |
|
peano2nn0 |
⊢ ( 𝑖 ∈ ℕ0 → ( 𝑖 + 1 ) ∈ ℕ0 ) |
| 18 |
|
rspcsbela |
⊢ ( ( ( 𝑖 + 1 ) ∈ ℕ0 ∧ ∀ 𝑘 ∈ ℕ0 𝐶 ∈ 𝐵 ) → ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) |
| 19 |
17 5 18
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) |
| 20 |
1 3
|
grpsubcl |
⊢ ( ( 𝐺 ∈ Grp ∧ ⦋ 𝑖 / 𝑘 ⦌ 𝐶 ∈ 𝐵 ∧ ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) → ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ∈ 𝐵 ) |
| 21 |
12 16 19 20
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ∈ 𝐵 ) |
| 22 |
21
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ℕ0 ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ∈ 𝐵 ) |
| 23 |
|
rspsbca |
⊢ ( ( 𝑖 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ℕ0 ( 𝑆 < 𝑘 → 𝐶 = 0 ) ) → [ 𝑖 / 𝑘 ] ( 𝑆 < 𝑘 → 𝐶 = 0 ) ) |
| 24 |
|
sbcimg |
⊢ ( 𝑖 ∈ V → ( [ 𝑖 / 𝑘 ] ( 𝑆 < 𝑘 → 𝐶 = 0 ) ↔ ( [ 𝑖 / 𝑘 ] 𝑆 < 𝑘 → [ 𝑖 / 𝑘 ] 𝐶 = 0 ) ) ) |
| 25 |
|
sbcbr2g |
⊢ ( 𝑖 ∈ V → ( [ 𝑖 / 𝑘 ] 𝑆 < 𝑘 ↔ 𝑆 < ⦋ 𝑖 / 𝑘 ⦌ 𝑘 ) ) |
| 26 |
|
csbvarg |
⊢ ( 𝑖 ∈ V → ⦋ 𝑖 / 𝑘 ⦌ 𝑘 = 𝑖 ) |
| 27 |
26
|
breq2d |
⊢ ( 𝑖 ∈ V → ( 𝑆 < ⦋ 𝑖 / 𝑘 ⦌ 𝑘 ↔ 𝑆 < 𝑖 ) ) |
| 28 |
25 27
|
bitrd |
⊢ ( 𝑖 ∈ V → ( [ 𝑖 / 𝑘 ] 𝑆 < 𝑘 ↔ 𝑆 < 𝑖 ) ) |
| 29 |
|
sbceq1g |
⊢ ( 𝑖 ∈ V → ( [ 𝑖 / 𝑘 ] 𝐶 = 0 ↔ ⦋ 𝑖 / 𝑘 ⦌ 𝐶 = 0 ) ) |
| 30 |
28 29
|
imbi12d |
⊢ ( 𝑖 ∈ V → ( ( [ 𝑖 / 𝑘 ] 𝑆 < 𝑘 → [ 𝑖 / 𝑘 ] 𝐶 = 0 ) ↔ ( 𝑆 < 𝑖 → ⦋ 𝑖 / 𝑘 ⦌ 𝐶 = 0 ) ) ) |
| 31 |
24 30
|
bitrd |
⊢ ( 𝑖 ∈ V → ( [ 𝑖 / 𝑘 ] ( 𝑆 < 𝑘 → 𝐶 = 0 ) ↔ ( 𝑆 < 𝑖 → ⦋ 𝑖 / 𝑘 ⦌ 𝐶 = 0 ) ) ) |
| 32 |
31
|
elv |
⊢ ( [ 𝑖 / 𝑘 ] ( 𝑆 < 𝑘 → 𝐶 = 0 ) ↔ ( 𝑆 < 𝑖 → ⦋ 𝑖 / 𝑘 ⦌ 𝐶 = 0 ) ) |
| 33 |
23 32
|
sylib |
⊢ ( ( 𝑖 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ℕ0 ( 𝑆 < 𝑘 → 𝐶 = 0 ) ) → ( 𝑆 < 𝑖 → ⦋ 𝑖 / 𝑘 ⦌ 𝐶 = 0 ) ) |
| 34 |
33
|
expcom |
⊢ ( ∀ 𝑘 ∈ ℕ0 ( 𝑆 < 𝑘 → 𝐶 = 0 ) → ( 𝑖 ∈ ℕ0 → ( 𝑆 < 𝑖 → ⦋ 𝑖 / 𝑘 ⦌ 𝐶 = 0 ) ) ) |
| 35 |
7 34
|
syl |
⊢ ( 𝜑 → ( 𝑖 ∈ ℕ0 → ( 𝑆 < 𝑖 → ⦋ 𝑖 / 𝑘 ⦌ 𝐶 = 0 ) ) ) |
| 36 |
35
|
imp31 |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑆 < 𝑖 ) → ⦋ 𝑖 / 𝑘 ⦌ 𝐶 = 0 ) |
| 37 |
6
|
nn0red |
⊢ ( 𝜑 → 𝑆 ∈ ℝ ) |
| 38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝑆 ∈ ℝ ) |
| 39 |
38
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑆 < 𝑖 ) → 𝑆 ∈ ℝ ) |
| 40 |
|
nn0re |
⊢ ( 𝑖 ∈ ℕ0 → 𝑖 ∈ ℝ ) |
| 41 |
40
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑆 < 𝑖 ) → 𝑖 ∈ ℝ ) |
| 42 |
17
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑆 < 𝑖 ) → ( 𝑖 + 1 ) ∈ ℕ0 ) |
| 43 |
42
|
nn0red |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑆 < 𝑖 ) → ( 𝑖 + 1 ) ∈ ℝ ) |
| 44 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑆 < 𝑖 ) → 𝑆 < 𝑖 ) |
| 45 |
41
|
ltp1d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑆 < 𝑖 ) → 𝑖 < ( 𝑖 + 1 ) ) |
| 46 |
39 41 43 44 45
|
lttrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑆 < 𝑖 ) → 𝑆 < ( 𝑖 + 1 ) ) |
| 47 |
46
|
ex |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑆 < 𝑖 → 𝑆 < ( 𝑖 + 1 ) ) ) |
| 48 |
|
rspsbca |
⊢ ( ( ( 𝑖 + 1 ) ∈ ℕ0 ∧ ∀ 𝑘 ∈ ℕ0 ( 𝑆 < 𝑘 → 𝐶 = 0 ) ) → [ ( 𝑖 + 1 ) / 𝑘 ] ( 𝑆 < 𝑘 → 𝐶 = 0 ) ) |
| 49 |
|
ovex |
⊢ ( 𝑖 + 1 ) ∈ V |
| 50 |
|
sbcimg |
⊢ ( ( 𝑖 + 1 ) ∈ V → ( [ ( 𝑖 + 1 ) / 𝑘 ] ( 𝑆 < 𝑘 → 𝐶 = 0 ) ↔ ( [ ( 𝑖 + 1 ) / 𝑘 ] 𝑆 < 𝑘 → [ ( 𝑖 + 1 ) / 𝑘 ] 𝐶 = 0 ) ) ) |
| 51 |
|
sbcbr2g |
⊢ ( ( 𝑖 + 1 ) ∈ V → ( [ ( 𝑖 + 1 ) / 𝑘 ] 𝑆 < 𝑘 ↔ 𝑆 < ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝑘 ) ) |
| 52 |
|
csbvarg |
⊢ ( ( 𝑖 + 1 ) ∈ V → ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝑘 = ( 𝑖 + 1 ) ) |
| 53 |
52
|
breq2d |
⊢ ( ( 𝑖 + 1 ) ∈ V → ( 𝑆 < ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝑘 ↔ 𝑆 < ( 𝑖 + 1 ) ) ) |
| 54 |
51 53
|
bitrd |
⊢ ( ( 𝑖 + 1 ) ∈ V → ( [ ( 𝑖 + 1 ) / 𝑘 ] 𝑆 < 𝑘 ↔ 𝑆 < ( 𝑖 + 1 ) ) ) |
| 55 |
|
sbceq1g |
⊢ ( ( 𝑖 + 1 ) ∈ V → ( [ ( 𝑖 + 1 ) / 𝑘 ] 𝐶 = 0 ↔ ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 = 0 ) ) |
| 56 |
54 55
|
imbi12d |
⊢ ( ( 𝑖 + 1 ) ∈ V → ( ( [ ( 𝑖 + 1 ) / 𝑘 ] 𝑆 < 𝑘 → [ ( 𝑖 + 1 ) / 𝑘 ] 𝐶 = 0 ) ↔ ( 𝑆 < ( 𝑖 + 1 ) → ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 = 0 ) ) ) |
| 57 |
50 56
|
bitrd |
⊢ ( ( 𝑖 + 1 ) ∈ V → ( [ ( 𝑖 + 1 ) / 𝑘 ] ( 𝑆 < 𝑘 → 𝐶 = 0 ) ↔ ( 𝑆 < ( 𝑖 + 1 ) → ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 = 0 ) ) ) |
| 58 |
49 57
|
ax-mp |
⊢ ( [ ( 𝑖 + 1 ) / 𝑘 ] ( 𝑆 < 𝑘 → 𝐶 = 0 ) ↔ ( 𝑆 < ( 𝑖 + 1 ) → ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 = 0 ) ) |
| 59 |
48 58
|
sylib |
⊢ ( ( ( 𝑖 + 1 ) ∈ ℕ0 ∧ ∀ 𝑘 ∈ ℕ0 ( 𝑆 < 𝑘 → 𝐶 = 0 ) ) → ( 𝑆 < ( 𝑖 + 1 ) → ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 = 0 ) ) |
| 60 |
17 7 59
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑆 < ( 𝑖 + 1 ) → ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 = 0 ) ) |
| 61 |
47 60
|
syld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑆 < 𝑖 → ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 = 0 ) ) |
| 62 |
61
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑆 < 𝑖 ) → ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 = 0 ) |
| 63 |
36 62
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑆 < 𝑖 ) → ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) = ( 0 − 0 ) ) |
| 64 |
12
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑆 < 𝑖 ) → 𝐺 ∈ Grp ) |
| 65 |
1 4
|
grpidcl |
⊢ ( 𝐺 ∈ Grp → 0 ∈ 𝐵 ) |
| 66 |
1 4 3
|
grpsubid |
⊢ ( ( 𝐺 ∈ Grp ∧ 0 ∈ 𝐵 ) → ( 0 − 0 ) = 0 ) |
| 67 |
64 65 66
|
syl2anc2 |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑆 < 𝑖 ) → ( 0 − 0 ) = 0 ) |
| 68 |
63 67
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑆 < 𝑖 ) → ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) = 0 ) |
| 69 |
68
|
ex |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑆 < 𝑖 → ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) = 0 ) ) |
| 70 |
69
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ℕ0 ( 𝑆 < 𝑖 → ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) = 0 ) ) |
| 71 |
1 4 9 22 6 70
|
gsummptnn0fz |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑖 ∈ ℕ0 ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( 𝐺 Σg ( 𝑖 ∈ ( 0 ... 𝑆 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) ) |
| 72 |
|
fzssuz |
⊢ ( 0 ... ( 𝑆 + 1 ) ) ⊆ ( ℤ≥ ‘ 0 ) |
| 73 |
72
|
a1i |
⊢ ( 𝜑 → ( 0 ... ( 𝑆 + 1 ) ) ⊆ ( ℤ≥ ‘ 0 ) ) |
| 74 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 75 |
73 74
|
sseqtrrdi |
⊢ ( 𝜑 → ( 0 ... ( 𝑆 + 1 ) ) ⊆ ℕ0 ) |
| 76 |
|
ssralv |
⊢ ( ( 0 ... ( 𝑆 + 1 ) ) ⊆ ℕ0 → ( ∀ 𝑘 ∈ ℕ0 𝐶 ∈ 𝐵 → ∀ 𝑘 ∈ ( 0 ... ( 𝑆 + 1 ) ) 𝐶 ∈ 𝐵 ) ) |
| 77 |
75 5 76
|
sylc |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ... ( 𝑆 + 1 ) ) 𝐶 ∈ 𝐵 ) |
| 78 |
1 2 3 6 77
|
telgsumfz0s |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑖 ∈ ( 0 ... 𝑆 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 0 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑆 + 1 ) / 𝑘 ⦌ 𝐶 ) ) |
| 79 |
|
peano2nn0 |
⊢ ( 𝑆 ∈ ℕ0 → ( 𝑆 + 1 ) ∈ ℕ0 ) |
| 80 |
6 79
|
syl |
⊢ ( 𝜑 → ( 𝑆 + 1 ) ∈ ℕ0 ) |
| 81 |
37
|
ltp1d |
⊢ ( 𝜑 → 𝑆 < ( 𝑆 + 1 ) ) |
| 82 |
|
rspsbca |
⊢ ( ( ( 𝑆 + 1 ) ∈ ℕ0 ∧ ∀ 𝑘 ∈ ℕ0 ( 𝑆 < 𝑘 → 𝐶 = 0 ) ) → [ ( 𝑆 + 1 ) / 𝑘 ] ( 𝑆 < 𝑘 → 𝐶 = 0 ) ) |
| 83 |
|
ovex |
⊢ ( 𝑆 + 1 ) ∈ V |
| 84 |
|
sbcimg |
⊢ ( ( 𝑆 + 1 ) ∈ V → ( [ ( 𝑆 + 1 ) / 𝑘 ] ( 𝑆 < 𝑘 → 𝐶 = 0 ) ↔ ( [ ( 𝑆 + 1 ) / 𝑘 ] 𝑆 < 𝑘 → [ ( 𝑆 + 1 ) / 𝑘 ] 𝐶 = 0 ) ) ) |
| 85 |
|
sbcbr2g |
⊢ ( ( 𝑆 + 1 ) ∈ V → ( [ ( 𝑆 + 1 ) / 𝑘 ] 𝑆 < 𝑘 ↔ 𝑆 < ⦋ ( 𝑆 + 1 ) / 𝑘 ⦌ 𝑘 ) ) |
| 86 |
|
csbvarg |
⊢ ( ( 𝑆 + 1 ) ∈ V → ⦋ ( 𝑆 + 1 ) / 𝑘 ⦌ 𝑘 = ( 𝑆 + 1 ) ) |
| 87 |
86
|
breq2d |
⊢ ( ( 𝑆 + 1 ) ∈ V → ( 𝑆 < ⦋ ( 𝑆 + 1 ) / 𝑘 ⦌ 𝑘 ↔ 𝑆 < ( 𝑆 + 1 ) ) ) |
| 88 |
85 87
|
bitrd |
⊢ ( ( 𝑆 + 1 ) ∈ V → ( [ ( 𝑆 + 1 ) / 𝑘 ] 𝑆 < 𝑘 ↔ 𝑆 < ( 𝑆 + 1 ) ) ) |
| 89 |
|
sbceq1g |
⊢ ( ( 𝑆 + 1 ) ∈ V → ( [ ( 𝑆 + 1 ) / 𝑘 ] 𝐶 = 0 ↔ ⦋ ( 𝑆 + 1 ) / 𝑘 ⦌ 𝐶 = 0 ) ) |
| 90 |
88 89
|
imbi12d |
⊢ ( ( 𝑆 + 1 ) ∈ V → ( ( [ ( 𝑆 + 1 ) / 𝑘 ] 𝑆 < 𝑘 → [ ( 𝑆 + 1 ) / 𝑘 ] 𝐶 = 0 ) ↔ ( 𝑆 < ( 𝑆 + 1 ) → ⦋ ( 𝑆 + 1 ) / 𝑘 ⦌ 𝐶 = 0 ) ) ) |
| 91 |
84 90
|
bitrd |
⊢ ( ( 𝑆 + 1 ) ∈ V → ( [ ( 𝑆 + 1 ) / 𝑘 ] ( 𝑆 < 𝑘 → 𝐶 = 0 ) ↔ ( 𝑆 < ( 𝑆 + 1 ) → ⦋ ( 𝑆 + 1 ) / 𝑘 ⦌ 𝐶 = 0 ) ) ) |
| 92 |
83 91
|
ax-mp |
⊢ ( [ ( 𝑆 + 1 ) / 𝑘 ] ( 𝑆 < 𝑘 → 𝐶 = 0 ) ↔ ( 𝑆 < ( 𝑆 + 1 ) → ⦋ ( 𝑆 + 1 ) / 𝑘 ⦌ 𝐶 = 0 ) ) |
| 93 |
82 92
|
sylib |
⊢ ( ( ( 𝑆 + 1 ) ∈ ℕ0 ∧ ∀ 𝑘 ∈ ℕ0 ( 𝑆 < 𝑘 → 𝐶 = 0 ) ) → ( 𝑆 < ( 𝑆 + 1 ) → ⦋ ( 𝑆 + 1 ) / 𝑘 ⦌ 𝐶 = 0 ) ) |
| 94 |
93
|
ex |
⊢ ( ( 𝑆 + 1 ) ∈ ℕ0 → ( ∀ 𝑘 ∈ ℕ0 ( 𝑆 < 𝑘 → 𝐶 = 0 ) → ( 𝑆 < ( 𝑆 + 1 ) → ⦋ ( 𝑆 + 1 ) / 𝑘 ⦌ 𝐶 = 0 ) ) ) |
| 95 |
80 7 81 94
|
syl3c |
⊢ ( 𝜑 → ⦋ ( 𝑆 + 1 ) / 𝑘 ⦌ 𝐶 = 0 ) |
| 96 |
95
|
oveq2d |
⊢ ( 𝜑 → ( ⦋ 0 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑆 + 1 ) / 𝑘 ⦌ 𝐶 ) = ( ⦋ 0 / 𝑘 ⦌ 𝐶 − 0 ) ) |
| 97 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 98 |
97
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℕ0 ) |
| 99 |
|
rspcsbela |
⊢ ( ( 0 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ℕ0 𝐶 ∈ 𝐵 ) → ⦋ 0 / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) |
| 100 |
98 5 99
|
syl2anc |
⊢ ( 𝜑 → ⦋ 0 / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) |
| 101 |
1 4 3
|
grpsubid1 |
⊢ ( ( 𝐺 ∈ Grp ∧ ⦋ 0 / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) → ( ⦋ 0 / 𝑘 ⦌ 𝐶 − 0 ) = ⦋ 0 / 𝑘 ⦌ 𝐶 ) |
| 102 |
11 100 101
|
syl2anc |
⊢ ( 𝜑 → ( ⦋ 0 / 𝑘 ⦌ 𝐶 − 0 ) = ⦋ 0 / 𝑘 ⦌ 𝐶 ) |
| 103 |
96 102
|
eqtrd |
⊢ ( 𝜑 → ( ⦋ 0 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑆 + 1 ) / 𝑘 ⦌ 𝐶 ) = ⦋ 0 / 𝑘 ⦌ 𝐶 ) |
| 104 |
71 78 103
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑖 ∈ ℕ0 ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ⦋ 0 / 𝑘 ⦌ 𝐶 ) |