| Step |
Hyp |
Ref |
Expression |
| 1 |
|
telgsums.b |
|- B = ( Base ` G ) |
| 2 |
|
telgsums.g |
|- ( ph -> G e. Abel ) |
| 3 |
|
telgsums.m |
|- .- = ( -g ` G ) |
| 4 |
|
telgsums.0 |
|- .0. = ( 0g ` G ) |
| 5 |
|
telgsums.f |
|- ( ph -> A. k e. NN0 C e. B ) |
| 6 |
|
telgsums.s |
|- ( ph -> S e. NN0 ) |
| 7 |
|
telgsums.u |
|- ( ph -> A. k e. NN0 ( S < k -> C = .0. ) ) |
| 8 |
|
ablcmn |
|- ( G e. Abel -> G e. CMnd ) |
| 9 |
2 8
|
syl |
|- ( ph -> G e. CMnd ) |
| 10 |
|
ablgrp |
|- ( G e. Abel -> G e. Grp ) |
| 11 |
2 10
|
syl |
|- ( ph -> G e. Grp ) |
| 12 |
11
|
adantr |
|- ( ( ph /\ i e. NN0 ) -> G e. Grp ) |
| 13 |
|
simpr |
|- ( ( ph /\ i e. NN0 ) -> i e. NN0 ) |
| 14 |
5
|
adantr |
|- ( ( ph /\ i e. NN0 ) -> A. k e. NN0 C e. B ) |
| 15 |
|
rspcsbela |
|- ( ( i e. NN0 /\ A. k e. NN0 C e. B ) -> [_ i / k ]_ C e. B ) |
| 16 |
13 14 15
|
syl2anc |
|- ( ( ph /\ i e. NN0 ) -> [_ i / k ]_ C e. B ) |
| 17 |
|
peano2nn0 |
|- ( i e. NN0 -> ( i + 1 ) e. NN0 ) |
| 18 |
|
rspcsbela |
|- ( ( ( i + 1 ) e. NN0 /\ A. k e. NN0 C e. B ) -> [_ ( i + 1 ) / k ]_ C e. B ) |
| 19 |
17 5 18
|
syl2anr |
|- ( ( ph /\ i e. NN0 ) -> [_ ( i + 1 ) / k ]_ C e. B ) |
| 20 |
1 3
|
grpsubcl |
|- ( ( G e. Grp /\ [_ i / k ]_ C e. B /\ [_ ( i + 1 ) / k ]_ C e. B ) -> ( [_ i / k ]_ C .- [_ ( i + 1 ) / k ]_ C ) e. B ) |
| 21 |
12 16 19 20
|
syl3anc |
|- ( ( ph /\ i e. NN0 ) -> ( [_ i / k ]_ C .- [_ ( i + 1 ) / k ]_ C ) e. B ) |
| 22 |
21
|
ralrimiva |
|- ( ph -> A. i e. NN0 ( [_ i / k ]_ C .- [_ ( i + 1 ) / k ]_ C ) e. B ) |
| 23 |
|
rspsbca |
|- ( ( i e. NN0 /\ A. k e. NN0 ( S < k -> C = .0. ) ) -> [. i / k ]. ( S < k -> C = .0. ) ) |
| 24 |
|
sbcimg |
|- ( i e. _V -> ( [. i / k ]. ( S < k -> C = .0. ) <-> ( [. i / k ]. S < k -> [. i / k ]. C = .0. ) ) ) |
| 25 |
|
sbcbr2g |
|- ( i e. _V -> ( [. i / k ]. S < k <-> S < [_ i / k ]_ k ) ) |
| 26 |
|
csbvarg |
|- ( i e. _V -> [_ i / k ]_ k = i ) |
| 27 |
26
|
breq2d |
|- ( i e. _V -> ( S < [_ i / k ]_ k <-> S < i ) ) |
| 28 |
25 27
|
bitrd |
|- ( i e. _V -> ( [. i / k ]. S < k <-> S < i ) ) |
| 29 |
|
sbceq1g |
|- ( i e. _V -> ( [. i / k ]. C = .0. <-> [_ i / k ]_ C = .0. ) ) |
| 30 |
28 29
|
imbi12d |
|- ( i e. _V -> ( ( [. i / k ]. S < k -> [. i / k ]. C = .0. ) <-> ( S < i -> [_ i / k ]_ C = .0. ) ) ) |
| 31 |
24 30
|
bitrd |
|- ( i e. _V -> ( [. i / k ]. ( S < k -> C = .0. ) <-> ( S < i -> [_ i / k ]_ C = .0. ) ) ) |
| 32 |
31
|
elv |
|- ( [. i / k ]. ( S < k -> C = .0. ) <-> ( S < i -> [_ i / k ]_ C = .0. ) ) |
| 33 |
23 32
|
sylib |
|- ( ( i e. NN0 /\ A. k e. NN0 ( S < k -> C = .0. ) ) -> ( S < i -> [_ i / k ]_ C = .0. ) ) |
| 34 |
33
|
expcom |
|- ( A. k e. NN0 ( S < k -> C = .0. ) -> ( i e. NN0 -> ( S < i -> [_ i / k ]_ C = .0. ) ) ) |
| 35 |
7 34
|
syl |
|- ( ph -> ( i e. NN0 -> ( S < i -> [_ i / k ]_ C = .0. ) ) ) |
| 36 |
35
|
imp31 |
|- ( ( ( ph /\ i e. NN0 ) /\ S < i ) -> [_ i / k ]_ C = .0. ) |
| 37 |
6
|
nn0red |
|- ( ph -> S e. RR ) |
| 38 |
37
|
adantr |
|- ( ( ph /\ i e. NN0 ) -> S e. RR ) |
| 39 |
38
|
adantr |
|- ( ( ( ph /\ i e. NN0 ) /\ S < i ) -> S e. RR ) |
| 40 |
|
nn0re |
|- ( i e. NN0 -> i e. RR ) |
| 41 |
40
|
ad2antlr |
|- ( ( ( ph /\ i e. NN0 ) /\ S < i ) -> i e. RR ) |
| 42 |
17
|
ad2antlr |
|- ( ( ( ph /\ i e. NN0 ) /\ S < i ) -> ( i + 1 ) e. NN0 ) |
| 43 |
42
|
nn0red |
|- ( ( ( ph /\ i e. NN0 ) /\ S < i ) -> ( i + 1 ) e. RR ) |
| 44 |
|
simpr |
|- ( ( ( ph /\ i e. NN0 ) /\ S < i ) -> S < i ) |
| 45 |
41
|
ltp1d |
|- ( ( ( ph /\ i e. NN0 ) /\ S < i ) -> i < ( i + 1 ) ) |
| 46 |
39 41 43 44 45
|
lttrd |
|- ( ( ( ph /\ i e. NN0 ) /\ S < i ) -> S < ( i + 1 ) ) |
| 47 |
46
|
ex |
|- ( ( ph /\ i e. NN0 ) -> ( S < i -> S < ( i + 1 ) ) ) |
| 48 |
|
rspsbca |
|- ( ( ( i + 1 ) e. NN0 /\ A. k e. NN0 ( S < k -> C = .0. ) ) -> [. ( i + 1 ) / k ]. ( S < k -> C = .0. ) ) |
| 49 |
|
ovex |
|- ( i + 1 ) e. _V |
| 50 |
|
sbcimg |
|- ( ( i + 1 ) e. _V -> ( [. ( i + 1 ) / k ]. ( S < k -> C = .0. ) <-> ( [. ( i + 1 ) / k ]. S < k -> [. ( i + 1 ) / k ]. C = .0. ) ) ) |
| 51 |
|
sbcbr2g |
|- ( ( i + 1 ) e. _V -> ( [. ( i + 1 ) / k ]. S < k <-> S < [_ ( i + 1 ) / k ]_ k ) ) |
| 52 |
|
csbvarg |
|- ( ( i + 1 ) e. _V -> [_ ( i + 1 ) / k ]_ k = ( i + 1 ) ) |
| 53 |
52
|
breq2d |
|- ( ( i + 1 ) e. _V -> ( S < [_ ( i + 1 ) / k ]_ k <-> S < ( i + 1 ) ) ) |
| 54 |
51 53
|
bitrd |
|- ( ( i + 1 ) e. _V -> ( [. ( i + 1 ) / k ]. S < k <-> S < ( i + 1 ) ) ) |
| 55 |
|
sbceq1g |
|- ( ( i + 1 ) e. _V -> ( [. ( i + 1 ) / k ]. C = .0. <-> [_ ( i + 1 ) / k ]_ C = .0. ) ) |
| 56 |
54 55
|
imbi12d |
|- ( ( i + 1 ) e. _V -> ( ( [. ( i + 1 ) / k ]. S < k -> [. ( i + 1 ) / k ]. C = .0. ) <-> ( S < ( i + 1 ) -> [_ ( i + 1 ) / k ]_ C = .0. ) ) ) |
| 57 |
50 56
|
bitrd |
|- ( ( i + 1 ) e. _V -> ( [. ( i + 1 ) / k ]. ( S < k -> C = .0. ) <-> ( S < ( i + 1 ) -> [_ ( i + 1 ) / k ]_ C = .0. ) ) ) |
| 58 |
49 57
|
ax-mp |
|- ( [. ( i + 1 ) / k ]. ( S < k -> C = .0. ) <-> ( S < ( i + 1 ) -> [_ ( i + 1 ) / k ]_ C = .0. ) ) |
| 59 |
48 58
|
sylib |
|- ( ( ( i + 1 ) e. NN0 /\ A. k e. NN0 ( S < k -> C = .0. ) ) -> ( S < ( i + 1 ) -> [_ ( i + 1 ) / k ]_ C = .0. ) ) |
| 60 |
17 7 59
|
syl2anr |
|- ( ( ph /\ i e. NN0 ) -> ( S < ( i + 1 ) -> [_ ( i + 1 ) / k ]_ C = .0. ) ) |
| 61 |
47 60
|
syld |
|- ( ( ph /\ i e. NN0 ) -> ( S < i -> [_ ( i + 1 ) / k ]_ C = .0. ) ) |
| 62 |
61
|
imp |
|- ( ( ( ph /\ i e. NN0 ) /\ S < i ) -> [_ ( i + 1 ) / k ]_ C = .0. ) |
| 63 |
36 62
|
oveq12d |
|- ( ( ( ph /\ i e. NN0 ) /\ S < i ) -> ( [_ i / k ]_ C .- [_ ( i + 1 ) / k ]_ C ) = ( .0. .- .0. ) ) |
| 64 |
12
|
adantr |
|- ( ( ( ph /\ i e. NN0 ) /\ S < i ) -> G e. Grp ) |
| 65 |
1 4
|
grpidcl |
|- ( G e. Grp -> .0. e. B ) |
| 66 |
1 4 3
|
grpsubid |
|- ( ( G e. Grp /\ .0. e. B ) -> ( .0. .- .0. ) = .0. ) |
| 67 |
64 65 66
|
syl2anc2 |
|- ( ( ( ph /\ i e. NN0 ) /\ S < i ) -> ( .0. .- .0. ) = .0. ) |
| 68 |
63 67
|
eqtrd |
|- ( ( ( ph /\ i e. NN0 ) /\ S < i ) -> ( [_ i / k ]_ C .- [_ ( i + 1 ) / k ]_ C ) = .0. ) |
| 69 |
68
|
ex |
|- ( ( ph /\ i e. NN0 ) -> ( S < i -> ( [_ i / k ]_ C .- [_ ( i + 1 ) / k ]_ C ) = .0. ) ) |
| 70 |
69
|
ralrimiva |
|- ( ph -> A. i e. NN0 ( S < i -> ( [_ i / k ]_ C .- [_ ( i + 1 ) / k ]_ C ) = .0. ) ) |
| 71 |
1 4 9 22 6 70
|
gsummptnn0fz |
|- ( ph -> ( G gsum ( i e. NN0 |-> ( [_ i / k ]_ C .- [_ ( i + 1 ) / k ]_ C ) ) ) = ( G gsum ( i e. ( 0 ... S ) |-> ( [_ i / k ]_ C .- [_ ( i + 1 ) / k ]_ C ) ) ) ) |
| 72 |
|
fzssuz |
|- ( 0 ... ( S + 1 ) ) C_ ( ZZ>= ` 0 ) |
| 73 |
72
|
a1i |
|- ( ph -> ( 0 ... ( S + 1 ) ) C_ ( ZZ>= ` 0 ) ) |
| 74 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 75 |
73 74
|
sseqtrrdi |
|- ( ph -> ( 0 ... ( S + 1 ) ) C_ NN0 ) |
| 76 |
|
ssralv |
|- ( ( 0 ... ( S + 1 ) ) C_ NN0 -> ( A. k e. NN0 C e. B -> A. k e. ( 0 ... ( S + 1 ) ) C e. B ) ) |
| 77 |
75 5 76
|
sylc |
|- ( ph -> A. k e. ( 0 ... ( S + 1 ) ) C e. B ) |
| 78 |
1 2 3 6 77
|
telgsumfz0s |
|- ( ph -> ( G gsum ( i e. ( 0 ... S ) |-> ( [_ i / k ]_ C .- [_ ( i + 1 ) / k ]_ C ) ) ) = ( [_ 0 / k ]_ C .- [_ ( S + 1 ) / k ]_ C ) ) |
| 79 |
|
peano2nn0 |
|- ( S e. NN0 -> ( S + 1 ) e. NN0 ) |
| 80 |
6 79
|
syl |
|- ( ph -> ( S + 1 ) e. NN0 ) |
| 81 |
37
|
ltp1d |
|- ( ph -> S < ( S + 1 ) ) |
| 82 |
|
rspsbca |
|- ( ( ( S + 1 ) e. NN0 /\ A. k e. NN0 ( S < k -> C = .0. ) ) -> [. ( S + 1 ) / k ]. ( S < k -> C = .0. ) ) |
| 83 |
|
ovex |
|- ( S + 1 ) e. _V |
| 84 |
|
sbcimg |
|- ( ( S + 1 ) e. _V -> ( [. ( S + 1 ) / k ]. ( S < k -> C = .0. ) <-> ( [. ( S + 1 ) / k ]. S < k -> [. ( S + 1 ) / k ]. C = .0. ) ) ) |
| 85 |
|
sbcbr2g |
|- ( ( S + 1 ) e. _V -> ( [. ( S + 1 ) / k ]. S < k <-> S < [_ ( S + 1 ) / k ]_ k ) ) |
| 86 |
|
csbvarg |
|- ( ( S + 1 ) e. _V -> [_ ( S + 1 ) / k ]_ k = ( S + 1 ) ) |
| 87 |
86
|
breq2d |
|- ( ( S + 1 ) e. _V -> ( S < [_ ( S + 1 ) / k ]_ k <-> S < ( S + 1 ) ) ) |
| 88 |
85 87
|
bitrd |
|- ( ( S + 1 ) e. _V -> ( [. ( S + 1 ) / k ]. S < k <-> S < ( S + 1 ) ) ) |
| 89 |
|
sbceq1g |
|- ( ( S + 1 ) e. _V -> ( [. ( S + 1 ) / k ]. C = .0. <-> [_ ( S + 1 ) / k ]_ C = .0. ) ) |
| 90 |
88 89
|
imbi12d |
|- ( ( S + 1 ) e. _V -> ( ( [. ( S + 1 ) / k ]. S < k -> [. ( S + 1 ) / k ]. C = .0. ) <-> ( S < ( S + 1 ) -> [_ ( S + 1 ) / k ]_ C = .0. ) ) ) |
| 91 |
84 90
|
bitrd |
|- ( ( S + 1 ) e. _V -> ( [. ( S + 1 ) / k ]. ( S < k -> C = .0. ) <-> ( S < ( S + 1 ) -> [_ ( S + 1 ) / k ]_ C = .0. ) ) ) |
| 92 |
83 91
|
ax-mp |
|- ( [. ( S + 1 ) / k ]. ( S < k -> C = .0. ) <-> ( S < ( S + 1 ) -> [_ ( S + 1 ) / k ]_ C = .0. ) ) |
| 93 |
82 92
|
sylib |
|- ( ( ( S + 1 ) e. NN0 /\ A. k e. NN0 ( S < k -> C = .0. ) ) -> ( S < ( S + 1 ) -> [_ ( S + 1 ) / k ]_ C = .0. ) ) |
| 94 |
93
|
ex |
|- ( ( S + 1 ) e. NN0 -> ( A. k e. NN0 ( S < k -> C = .0. ) -> ( S < ( S + 1 ) -> [_ ( S + 1 ) / k ]_ C = .0. ) ) ) |
| 95 |
80 7 81 94
|
syl3c |
|- ( ph -> [_ ( S + 1 ) / k ]_ C = .0. ) |
| 96 |
95
|
oveq2d |
|- ( ph -> ( [_ 0 / k ]_ C .- [_ ( S + 1 ) / k ]_ C ) = ( [_ 0 / k ]_ C .- .0. ) ) |
| 97 |
|
0nn0 |
|- 0 e. NN0 |
| 98 |
97
|
a1i |
|- ( ph -> 0 e. NN0 ) |
| 99 |
|
rspcsbela |
|- ( ( 0 e. NN0 /\ A. k e. NN0 C e. B ) -> [_ 0 / k ]_ C e. B ) |
| 100 |
98 5 99
|
syl2anc |
|- ( ph -> [_ 0 / k ]_ C e. B ) |
| 101 |
1 4 3
|
grpsubid1 |
|- ( ( G e. Grp /\ [_ 0 / k ]_ C e. B ) -> ( [_ 0 / k ]_ C .- .0. ) = [_ 0 / k ]_ C ) |
| 102 |
11 100 101
|
syl2anc |
|- ( ph -> ( [_ 0 / k ]_ C .- .0. ) = [_ 0 / k ]_ C ) |
| 103 |
96 102
|
eqtrd |
|- ( ph -> ( [_ 0 / k ]_ C .- [_ ( S + 1 ) / k ]_ C ) = [_ 0 / k ]_ C ) |
| 104 |
71 78 103
|
3eqtrd |
|- ( ph -> ( G gsum ( i e. NN0 |-> ( [_ i / k ]_ C .- [_ ( i + 1 ) / k ]_ C ) ) ) = [_ 0 / k ]_ C ) |