| Step |
Hyp |
Ref |
Expression |
| 1 |
|
telgsum.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
telgsum.g |
⊢ ( 𝜑 → 𝐺 ∈ Abel ) |
| 3 |
|
telgsum.m |
⊢ − = ( -g ‘ 𝐺 ) |
| 4 |
|
telgsum.0 |
⊢ 0 = ( 0g ‘ 𝐺 ) |
| 5 |
|
telgsum.f |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ0 𝐴 ∈ 𝐵 ) |
| 6 |
|
telgsum.s |
⊢ ( 𝜑 → 𝑆 ∈ ℕ0 ) |
| 7 |
|
telgsum.u |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ0 ( 𝑆 < 𝑘 → 𝐴 = 0 ) ) |
| 8 |
|
telgsum.c |
⊢ ( 𝑘 = 𝑖 → 𝐴 = 𝐶 ) |
| 9 |
|
telgsum.d |
⊢ ( 𝑘 = ( 𝑖 + 1 ) → 𝐴 = 𝐷 ) |
| 10 |
|
telgsum.e |
⊢ ( 𝑘 = 0 → 𝐴 = 𝐸 ) |
| 11 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝑖 ∈ ℕ0 ) |
| 12 |
8
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑘 = 𝑖 ) → 𝐴 = 𝐶 ) |
| 13 |
11 12
|
csbied |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ⦋ 𝑖 / 𝑘 ⦌ 𝐴 = 𝐶 ) |
| 14 |
13
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝐶 = ⦋ 𝑖 / 𝑘 ⦌ 𝐴 ) |
| 15 |
|
peano2nn0 |
⊢ ( 𝑖 ∈ ℕ0 → ( 𝑖 + 1 ) ∈ ℕ0 ) |
| 16 |
15
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑖 + 1 ) ∈ ℕ0 ) |
| 17 |
9
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑘 = ( 𝑖 + 1 ) ) → 𝐴 = 𝐷 ) |
| 18 |
16 17
|
csbied |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐴 = 𝐷 ) |
| 19 |
18
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝐷 = ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐴 ) |
| 20 |
14 19
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝐶 − 𝐷 ) = ( ⦋ 𝑖 / 𝑘 ⦌ 𝐴 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐴 ) ) |
| 21 |
20
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑖 ∈ ℕ0 ↦ ( 𝐶 − 𝐷 ) ) = ( 𝑖 ∈ ℕ0 ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐴 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐴 ) ) ) |
| 22 |
21
|
oveq2d |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑖 ∈ ℕ0 ↦ ( 𝐶 − 𝐷 ) ) ) = ( 𝐺 Σg ( 𝑖 ∈ ℕ0 ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐴 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐴 ) ) ) ) |
| 23 |
1 2 3 4 5 6 7
|
telgsums |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑖 ∈ ℕ0 ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐴 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐴 ) ) ) = ⦋ 0 / 𝑘 ⦌ 𝐴 ) |
| 24 |
|
c0ex |
⊢ 0 ∈ V |
| 25 |
24
|
a1i |
⊢ ( 𝜑 → 0 ∈ V ) |
| 26 |
10
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 = 0 ) → 𝐴 = 𝐸 ) |
| 27 |
25 26
|
csbied |
⊢ ( 𝜑 → ⦋ 0 / 𝑘 ⦌ 𝐴 = 𝐸 ) |
| 28 |
22 23 27
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑖 ∈ ℕ0 ↦ ( 𝐶 − 𝐷 ) ) ) = 𝐸 ) |