Description: Telescoping finitely supported group sum ranging over nonnegative integers, using implicit substitution. (Contributed by AV, 31-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | telgsum.b | |
|
telgsum.g | |
||
telgsum.m | |
||
telgsum.0 | |
||
telgsum.f | |
||
telgsum.s | |
||
telgsum.u | |
||
telgsum.c | |
||
telgsum.d | |
||
telgsum.e | |
||
Assertion | telgsum | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | telgsum.b | |
|
2 | telgsum.g | |
|
3 | telgsum.m | |
|
4 | telgsum.0 | |
|
5 | telgsum.f | |
|
6 | telgsum.s | |
|
7 | telgsum.u | |
|
8 | telgsum.c | |
|
9 | telgsum.d | |
|
10 | telgsum.e | |
|
11 | simpr | |
|
12 | 8 | adantl | |
13 | 11 12 | csbied | |
14 | 13 | eqcomd | |
15 | peano2nn0 | |
|
16 | 15 | adantl | |
17 | 9 | adantl | |
18 | 16 17 | csbied | |
19 | 18 | eqcomd | |
20 | 14 19 | oveq12d | |
21 | 20 | mpteq2dva | |
22 | 21 | oveq2d | |
23 | 1 2 3 4 5 6 7 | telgsums | |
24 | c0ex | |
|
25 | 24 | a1i | |
26 | 10 | adantl | |
27 | 25 26 | csbied | |
28 | 22 23 27 | 3eqtrd | |