Metamath Proof Explorer


Theorem telgsum

Description: Telescoping finitely supported group sum ranging over nonnegative integers, using implicit substitution. (Contributed by AV, 31-Dec-2019)

Ref Expression
Hypotheses telgsum.b B=BaseG
telgsum.g φGAbel
telgsum.m -˙=-G
telgsum.0 0˙=0G
telgsum.f φk0AB
telgsum.s φS0
telgsum.u φk0S<kA=0˙
telgsum.c k=iA=C
telgsum.d k=i+1A=D
telgsum.e k=0A=E
Assertion telgsum φGi0C-˙D=E

Proof

Step Hyp Ref Expression
1 telgsum.b B=BaseG
2 telgsum.g φGAbel
3 telgsum.m -˙=-G
4 telgsum.0 0˙=0G
5 telgsum.f φk0AB
6 telgsum.s φS0
7 telgsum.u φk0S<kA=0˙
8 telgsum.c k=iA=C
9 telgsum.d k=i+1A=D
10 telgsum.e k=0A=E
11 simpr φi0i0
12 8 adantl φi0k=iA=C
13 11 12 csbied φi0i/kA=C
14 13 eqcomd φi0C=i/kA
15 peano2nn0 i0i+10
16 15 adantl φi0i+10
17 9 adantl φi0k=i+1A=D
18 16 17 csbied φi0i+1/kA=D
19 18 eqcomd φi0D=i+1/kA
20 14 19 oveq12d φi0C-˙D=i/kA-˙i+1/kA
21 20 mpteq2dva φi0C-˙D=i0i/kA-˙i+1/kA
22 21 oveq2d φGi0C-˙D=Gi0i/kA-˙i+1/kA
23 1 2 3 4 5 6 7 telgsums φGi0i/kA-˙i+1/kA=0/kA
24 c0ex 0V
25 24 a1i φ0V
26 10 adantl φk=0A=E
27 25 26 csbied φ0/kA=E
28 22 23 27 3eqtrd φGi0C-˙D=E