| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tfrALT.1 |
|- F = recs ( G ) |
| 2 |
|
epweon |
|- _E We On |
| 3 |
|
epse |
|- _E Se On |
| 4 |
|
df-recs |
|- recs ( G ) = wrecs ( _E , On , G ) |
| 5 |
1 4
|
eqtri |
|- F = wrecs ( _E , On , G ) |
| 6 |
5
|
wfr2 |
|- ( ( ( _E We On /\ _E Se On ) /\ A e. On ) -> ( F ` A ) = ( G ` ( F |` Pred ( _E , On , A ) ) ) ) |
| 7 |
2 3 6
|
mpanl12 |
|- ( A e. On -> ( F ` A ) = ( G ` ( F |` Pred ( _E , On , A ) ) ) ) |
| 8 |
|
predon |
|- ( A e. On -> Pred ( _E , On , A ) = A ) |
| 9 |
8
|
reseq2d |
|- ( A e. On -> ( F |` Pred ( _E , On , A ) ) = ( F |` A ) ) |
| 10 |
9
|
fveq2d |
|- ( A e. On -> ( G ` ( F |` Pred ( _E , On , A ) ) ) = ( G ` ( F |` A ) ) ) |
| 11 |
7 10
|
eqtrd |
|- ( A e. On -> ( F ` A ) = ( G ` ( F |` A ) ) ) |