| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tfrALT.1 |  |-  F = recs ( G ) | 
						
							| 2 |  | epweon |  |-  _E We On | 
						
							| 3 |  | epse |  |-  _E Se On | 
						
							| 4 |  | df-recs |  |-  recs ( G ) = wrecs ( _E , On , G ) | 
						
							| 5 | 1 4 | eqtri |  |-  F = wrecs ( _E , On , G ) | 
						
							| 6 | 5 | wfr2 |  |-  ( ( ( _E We On /\ _E Se On ) /\ A e. On ) -> ( F ` A ) = ( G ` ( F |` Pred ( _E , On , A ) ) ) ) | 
						
							| 7 | 2 3 6 | mpanl12 |  |-  ( A e. On -> ( F ` A ) = ( G ` ( F |` Pred ( _E , On , A ) ) ) ) | 
						
							| 8 |  | predon |  |-  ( A e. On -> Pred ( _E , On , A ) = A ) | 
						
							| 9 | 8 | reseq2d |  |-  ( A e. On -> ( F |` Pred ( _E , On , A ) ) = ( F |` A ) ) | 
						
							| 10 | 9 | fveq2d |  |-  ( A e. On -> ( G ` ( F |` Pred ( _E , On , A ) ) ) = ( G ` ( F |` A ) ) ) | 
						
							| 11 | 7 10 | eqtrd |  |-  ( A e. On -> ( F ` A ) = ( G ` ( F |` A ) ) ) |