Description: Second congruence theorem: ASA. (Angle-Side-Angle): If two pairs of angles of two triangles are equal in measurement, and the included sides are equal in length, then the triangles are congruent. Theorem 11.50 of Schwabhauser p. 108. (Contributed by Thierry Arnoux, 15-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tgsas.p | |- P = ( Base ` G ) |
|
| tgsas.m | |- .- = ( dist ` G ) |
||
| tgsas.i | |- I = ( Itv ` G ) |
||
| tgsas.g | |- ( ph -> G e. TarskiG ) |
||
| tgsas.a | |- ( ph -> A e. P ) |
||
| tgsas.b | |- ( ph -> B e. P ) |
||
| tgsas.c | |- ( ph -> C e. P ) |
||
| tgsas.d | |- ( ph -> D e. P ) |
||
| tgsas.e | |- ( ph -> E e. P ) |
||
| tgsas.f | |- ( ph -> F e. P ) |
||
| tgasa.l | |- L = ( LineG ` G ) |
||
| tgasa.1 | |- ( ph -> -. ( C e. ( A L B ) \/ A = B ) ) |
||
| tgasa.2 | |- ( ph -> ( A .- B ) = ( D .- E ) ) |
||
| tgasa.3 | |- ( ph -> <" A B C "> ( cgrA ` G ) <" D E F "> ) |
||
| tgasa.4 | |- ( ph -> <" C A B "> ( cgrA ` G ) <" F D E "> ) |
||
| Assertion | tgasa | |- ( ph -> <" A B C "> ( cgrG ` G ) <" D E F "> ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgsas.p | |- P = ( Base ` G ) |
|
| 2 | tgsas.m | |- .- = ( dist ` G ) |
|
| 3 | tgsas.i | |- I = ( Itv ` G ) |
|
| 4 | tgsas.g | |- ( ph -> G e. TarskiG ) |
|
| 5 | tgsas.a | |- ( ph -> A e. P ) |
|
| 6 | tgsas.b | |- ( ph -> B e. P ) |
|
| 7 | tgsas.c | |- ( ph -> C e. P ) |
|
| 8 | tgsas.d | |- ( ph -> D e. P ) |
|
| 9 | tgsas.e | |- ( ph -> E e. P ) |
|
| 10 | tgsas.f | |- ( ph -> F e. P ) |
|
| 11 | tgasa.l | |- L = ( LineG ` G ) |
|
| 12 | tgasa.1 | |- ( ph -> -. ( C e. ( A L B ) \/ A = B ) ) |
|
| 13 | tgasa.2 | |- ( ph -> ( A .- B ) = ( D .- E ) ) |
|
| 14 | tgasa.3 | |- ( ph -> <" A B C "> ( cgrA ` G ) <" D E F "> ) |
|
| 15 | tgasa.4 | |- ( ph -> <" C A B "> ( cgrA ` G ) <" F D E "> ) |
|
| 16 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | tgasa1 | |- ( ph -> ( B .- C ) = ( E .- F ) ) |
| 17 | 1 2 3 4 5 6 7 8 9 10 13 14 16 | tgsas | |- ( ph -> <" A B C "> ( cgrG ` G ) <" D E F "> ) |