Metamath Proof Explorer


Theorem tgsss1

Description: Third congruence theorem: SSS (Side-Side-Side): If the three pairs of sides of two triangles are equal in length, then the triangles are congruent. Theorem 11.51 of Schwabhauser p. 109. (Contributed by Thierry Arnoux, 1-Aug-2020)

Ref Expression
Hypotheses tgsas.p
|- P = ( Base ` G )
tgsas.m
|- .- = ( dist ` G )
tgsas.i
|- I = ( Itv ` G )
tgsas.g
|- ( ph -> G e. TarskiG )
tgsas.a
|- ( ph -> A e. P )
tgsas.b
|- ( ph -> B e. P )
tgsas.c
|- ( ph -> C e. P )
tgsas.d
|- ( ph -> D e. P )
tgsas.e
|- ( ph -> E e. P )
tgsas.f
|- ( ph -> F e. P )
tgsss.1
|- ( ph -> ( A .- B ) = ( D .- E ) )
tgsss.2
|- ( ph -> ( B .- C ) = ( E .- F ) )
tgsss.3
|- ( ph -> ( C .- A ) = ( F .- D ) )
tgsss.4
|- ( ph -> A =/= B )
tgsss.5
|- ( ph -> B =/= C )
tgsss.6
|- ( ph -> C =/= A )
Assertion tgsss1
|- ( ph -> <" A B C "> ( cgrA ` G ) <" D E F "> )

Proof

Step Hyp Ref Expression
1 tgsas.p
 |-  P = ( Base ` G )
2 tgsas.m
 |-  .- = ( dist ` G )
3 tgsas.i
 |-  I = ( Itv ` G )
4 tgsas.g
 |-  ( ph -> G e. TarskiG )
5 tgsas.a
 |-  ( ph -> A e. P )
6 tgsas.b
 |-  ( ph -> B e. P )
7 tgsas.c
 |-  ( ph -> C e. P )
8 tgsas.d
 |-  ( ph -> D e. P )
9 tgsas.e
 |-  ( ph -> E e. P )
10 tgsas.f
 |-  ( ph -> F e. P )
11 tgsss.1
 |-  ( ph -> ( A .- B ) = ( D .- E ) )
12 tgsss.2
 |-  ( ph -> ( B .- C ) = ( E .- F ) )
13 tgsss.3
 |-  ( ph -> ( C .- A ) = ( F .- D ) )
14 tgsss.4
 |-  ( ph -> A =/= B )
15 tgsss.5
 |-  ( ph -> B =/= C )
16 tgsss.6
 |-  ( ph -> C =/= A )
17 eqid
 |-  ( hlG ` G ) = ( hlG ` G )
18 eqid
 |-  ( cgrG ` G ) = ( cgrG ` G )
19 1 2 18 4 5 6 7 8 9 10 11 12 13 trgcgr
 |-  ( ph -> <" A B C "> ( cgrG ` G ) <" D E F "> )
20 1 3 4 17 5 6 7 8 9 10 14 15 19 cgrcgra
 |-  ( ph -> <" A B C "> ( cgrA ` G ) <" D E F "> )