Description: Third congruence theorem: SSS (Side-Side-Side): If the three pairs of sides of two triangles are equal in length, then the triangles are congruent. Theorem 11.51 of Schwabhauser p. 109. (Contributed by Thierry Arnoux, 1-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | tgsas.p | |- P = ( Base ` G ) |
|
tgsas.m | |- .- = ( dist ` G ) |
||
tgsas.i | |- I = ( Itv ` G ) |
||
tgsas.g | |- ( ph -> G e. TarskiG ) |
||
tgsas.a | |- ( ph -> A e. P ) |
||
tgsas.b | |- ( ph -> B e. P ) |
||
tgsas.c | |- ( ph -> C e. P ) |
||
tgsas.d | |- ( ph -> D e. P ) |
||
tgsas.e | |- ( ph -> E e. P ) |
||
tgsas.f | |- ( ph -> F e. P ) |
||
tgsss.1 | |- ( ph -> ( A .- B ) = ( D .- E ) ) |
||
tgsss.2 | |- ( ph -> ( B .- C ) = ( E .- F ) ) |
||
tgsss.3 | |- ( ph -> ( C .- A ) = ( F .- D ) ) |
||
tgsss.4 | |- ( ph -> A =/= B ) |
||
tgsss.5 | |- ( ph -> B =/= C ) |
||
tgsss.6 | |- ( ph -> C =/= A ) |
||
Assertion | tgsss1 | |- ( ph -> <" A B C "> ( cgrA ` G ) <" D E F "> ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgsas.p | |- P = ( Base ` G ) |
|
2 | tgsas.m | |- .- = ( dist ` G ) |
|
3 | tgsas.i | |- I = ( Itv ` G ) |
|
4 | tgsas.g | |- ( ph -> G e. TarskiG ) |
|
5 | tgsas.a | |- ( ph -> A e. P ) |
|
6 | tgsas.b | |- ( ph -> B e. P ) |
|
7 | tgsas.c | |- ( ph -> C e. P ) |
|
8 | tgsas.d | |- ( ph -> D e. P ) |
|
9 | tgsas.e | |- ( ph -> E e. P ) |
|
10 | tgsas.f | |- ( ph -> F e. P ) |
|
11 | tgsss.1 | |- ( ph -> ( A .- B ) = ( D .- E ) ) |
|
12 | tgsss.2 | |- ( ph -> ( B .- C ) = ( E .- F ) ) |
|
13 | tgsss.3 | |- ( ph -> ( C .- A ) = ( F .- D ) ) |
|
14 | tgsss.4 | |- ( ph -> A =/= B ) |
|
15 | tgsss.5 | |- ( ph -> B =/= C ) |
|
16 | tgsss.6 | |- ( ph -> C =/= A ) |
|
17 | eqid | |- ( hlG ` G ) = ( hlG ` G ) |
|
18 | eqid | |- ( cgrG ` G ) = ( cgrG ` G ) |
|
19 | 1 2 18 4 5 6 7 8 9 10 11 12 13 | trgcgr | |- ( ph -> <" A B C "> ( cgrG ` G ) <" D E F "> ) |
20 | 1 3 4 17 5 6 7 8 9 10 14 15 19 | cgrcgra | |- ( ph -> <" A B C "> ( cgrA ` G ) <" D E F "> ) |