Metamath Proof Explorer


Theorem tgsss1

Description: Third congruence theorem: SSS (Side-Side-Side): If the three pairs of sides of two triangles are equal in length, then the triangles are congruent. Theorem 11.51 of Schwabhauser p. 109. (Contributed by Thierry Arnoux, 1-Aug-2020)

Ref Expression
Hypotheses tgsas.p P=BaseG
tgsas.m -˙=distG
tgsas.i I=ItvG
tgsas.g φG𝒢Tarski
tgsas.a φAP
tgsas.b φBP
tgsas.c φCP
tgsas.d φDP
tgsas.e φEP
tgsas.f φFP
tgsss.1 φA-˙B=D-˙E
tgsss.2 φB-˙C=E-˙F
tgsss.3 φC-˙A=F-˙D
tgsss.4 φAB
tgsss.5 φBC
tgsss.6 φCA
Assertion tgsss1 φ⟨“ABC”⟩𝒢G⟨“DEF”⟩

Proof

Step Hyp Ref Expression
1 tgsas.p P=BaseG
2 tgsas.m -˙=distG
3 tgsas.i I=ItvG
4 tgsas.g φG𝒢Tarski
5 tgsas.a φAP
6 tgsas.b φBP
7 tgsas.c φCP
8 tgsas.d φDP
9 tgsas.e φEP
10 tgsas.f φFP
11 tgsss.1 φA-˙B=D-˙E
12 tgsss.2 φB-˙C=E-˙F
13 tgsss.3 φC-˙A=F-˙D
14 tgsss.4 φAB
15 tgsss.5 φBC
16 tgsss.6 φCA
17 eqid hl𝒢G=hl𝒢G
18 eqid 𝒢G=𝒢G
19 1 2 18 4 5 6 7 8 9 10 11 12 13 trgcgr φ⟨“ABC”⟩𝒢G⟨“DEF”⟩
20 1 3 4 17 5 6 7 8 9 10 14 15 19 cgrcgra φ⟨“ABC”⟩𝒢G⟨“DEF”⟩