Metamath Proof Explorer


Theorem cgrcgra

Description: Triangle congruence implies angle congruence. This is a portion of CPCTC, focusing on a specific angle. (Contributed by Arnoux, 2-Aug-2020)

Ref Expression
Hypotheses cgraid.p P=BaseG
cgraid.i I=ItvG
cgraid.g φG𝒢Tarski
cgraid.k K=hl𝒢G
cgraid.a φAP
cgraid.b φBP
cgraid.c φCP
cgracom.d φDP
cgracom.e φEP
cgracom.f φFP
cgrcgra.1 φAB
cgrcgra.2 φBC
cgrcgra.3 φ⟨“ABC”⟩𝒢G⟨“DEF”⟩
Assertion cgrcgra φ⟨“ABC”⟩𝒢G⟨“DEF”⟩

Proof

Step Hyp Ref Expression
1 cgraid.p P=BaseG
2 cgraid.i I=ItvG
3 cgraid.g φG𝒢Tarski
4 cgraid.k K=hl𝒢G
5 cgraid.a φAP
6 cgraid.b φBP
7 cgraid.c φCP
8 cgracom.d φDP
9 cgracom.e φEP
10 cgracom.f φFP
11 cgrcgra.1 φAB
12 cgrcgra.2 φBC
13 cgrcgra.3 φ⟨“ABC”⟩𝒢G⟨“DEF”⟩
14 eqid distG=distG
15 eqid 𝒢G=𝒢G
16 1 14 2 15 3 5 6 7 8 9 10 13 cgr3simp1 φAdistGB=DdistGE
17 1 14 2 3 5 6 8 9 16 11 tgcgrneq φDE
18 1 2 4 8 5 9 3 17 hlid φDKED
19 1 14 2 15 3 5 6 7 8 9 10 13 cgr3simp2 φBdistGC=EdistGF
20 1 14 2 3 6 7 9 10 19 tgcgrcomlr φCdistGB=FdistGE
21 12 necomd φCB
22 1 14 2 3 7 6 10 9 20 21 tgcgrneq φFE
23 1 2 4 10 5 9 3 22 hlid φFKEF
24 1 2 4 3 5 6 7 8 9 10 8 10 13 18 23 iscgrad φ⟨“ABC”⟩𝒢G⟨“DEF”⟩