Description: Angle congruence commutes. Theorem 11.7 of Schwabhauser p. 97. (Contributed by Thierry Arnoux, 5-Mar-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cgraid.p | |
|
cgraid.i | |
||
cgraid.g | |
||
cgraid.k | |
||
cgraid.a | |
||
cgraid.b | |
||
cgraid.c | |
||
cgracom.d | |
||
cgracom.e | |
||
cgracom.f | |
||
cgracom.1 | |
||
Assertion | cgracom | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cgraid.p | |
|
2 | cgraid.i | |
|
3 | cgraid.g | |
|
4 | cgraid.k | |
|
5 | cgraid.a | |
|
6 | cgraid.b | |
|
7 | cgraid.c | |
|
8 | cgracom.d | |
|
9 | cgracom.e | |
|
10 | cgracom.f | |
|
11 | cgracom.1 | |
|
12 | eqid | |
|
13 | eqid | |
|
14 | 3 | ad3antrrr | |
15 | 8 | ad3antrrr | |
16 | 9 | ad3antrrr | |
17 | 10 | ad3antrrr | |
18 | simpllr | |
|
19 | 6 | ad3antrrr | |
20 | simplr | |
|
21 | simprlr | |
|
22 | 21 | eqcomd | |
23 | 1 12 2 14 16 15 19 18 22 | tgcgrcomlr | |
24 | simprrr | |
|
25 | 24 | eqcomd | |
26 | 5 | ad3antrrr | |
27 | 7 | ad3antrrr | |
28 | 11 | ad3antrrr | |
29 | simprll | |
|
30 | simprrl | |
|
31 | 1 2 4 14 26 19 27 15 16 17 28 18 12 20 29 30 21 24 | cgracgr | |
32 | 31 | eqcomd | |
33 | 1 12 2 14 15 17 18 20 32 | tgcgrcomlr | |
34 | 1 12 13 14 15 16 17 18 19 20 23 25 33 | trgcgr | |
35 | 34 29 30 | 3jca | |
36 | 1 2 4 3 5 6 7 8 9 10 11 | cgrane1 | |
37 | 1 2 4 3 5 6 7 8 9 10 11 | cgrane3 | |
38 | 1 2 4 6 9 8 3 5 12 36 37 | hlcgrex | |
39 | 1 2 4 3 5 6 7 8 9 10 11 | cgrane2 | |
40 | 39 | necomd | |
41 | 1 2 4 3 5 6 7 8 9 10 11 | cgrane4 | |
42 | 1 2 4 6 9 10 3 7 12 40 41 | hlcgrex | |
43 | reeanv | |
|
44 | 38 42 43 | sylanbrc | |
45 | 35 44 | reximddv2 | |
46 | 1 2 4 3 8 9 10 5 6 7 | iscgra | |
47 | 45 46 | mpbird | |