Metamath Proof Explorer


Theorem cgracom

Description: Angle congruence commutes. Theorem 11.7 of Schwabhauser p. 97. (Contributed by Thierry Arnoux, 5-Mar-2020)

Ref Expression
Hypotheses cgraid.p P=BaseG
cgraid.i I=ItvG
cgraid.g φG𝒢Tarski
cgraid.k K=hl𝒢G
cgraid.a φAP
cgraid.b φBP
cgraid.c φCP
cgracom.d φDP
cgracom.e φEP
cgracom.f φFP
cgracom.1 φ⟨“ABC”⟩𝒢G⟨“DEF”⟩
Assertion cgracom φ⟨“DEF”⟩𝒢G⟨“ABC”⟩

Proof

Step Hyp Ref Expression
1 cgraid.p P=BaseG
2 cgraid.i I=ItvG
3 cgraid.g φG𝒢Tarski
4 cgraid.k K=hl𝒢G
5 cgraid.a φAP
6 cgraid.b φBP
7 cgraid.c φCP
8 cgracom.d φDP
9 cgracom.e φEP
10 cgracom.f φFP
11 cgracom.1 φ⟨“ABC”⟩𝒢G⟨“DEF”⟩
12 eqid distG=distG
13 eqid 𝒢G=𝒢G
14 3 ad3antrrr φxPyPxKBABdistGx=EdistGDyKBCBdistGy=EdistGFG𝒢Tarski
15 8 ad3antrrr φxPyPxKBABdistGx=EdistGDyKBCBdistGy=EdistGFDP
16 9 ad3antrrr φxPyPxKBABdistGx=EdistGDyKBCBdistGy=EdistGFEP
17 10 ad3antrrr φxPyPxKBABdistGx=EdistGDyKBCBdistGy=EdistGFFP
18 simpllr φxPyPxKBABdistGx=EdistGDyKBCBdistGy=EdistGFxP
19 6 ad3antrrr φxPyPxKBABdistGx=EdistGDyKBCBdistGy=EdistGFBP
20 simplr φxPyPxKBABdistGx=EdistGDyKBCBdistGy=EdistGFyP
21 simprlr φxPyPxKBABdistGx=EdistGDyKBCBdistGy=EdistGFBdistGx=EdistGD
22 21 eqcomd φxPyPxKBABdistGx=EdistGDyKBCBdistGy=EdistGFEdistGD=BdistGx
23 1 12 2 14 16 15 19 18 22 tgcgrcomlr φxPyPxKBABdistGx=EdistGDyKBCBdistGy=EdistGFDdistGE=xdistGB
24 simprrr φxPyPxKBABdistGx=EdistGDyKBCBdistGy=EdistGFBdistGy=EdistGF
25 24 eqcomd φxPyPxKBABdistGx=EdistGDyKBCBdistGy=EdistGFEdistGF=BdistGy
26 5 ad3antrrr φxPyPxKBABdistGx=EdistGDyKBCBdistGy=EdistGFAP
27 7 ad3antrrr φxPyPxKBABdistGx=EdistGDyKBCBdistGy=EdistGFCP
28 11 ad3antrrr φxPyPxKBABdistGx=EdistGDyKBCBdistGy=EdistGF⟨“ABC”⟩𝒢G⟨“DEF”⟩
29 simprll φxPyPxKBABdistGx=EdistGDyKBCBdistGy=EdistGFxKBA
30 simprrl φxPyPxKBABdistGx=EdistGDyKBCBdistGy=EdistGFyKBC
31 1 2 4 14 26 19 27 15 16 17 28 18 12 20 29 30 21 24 cgracgr φxPyPxKBABdistGx=EdistGDyKBCBdistGy=EdistGFxdistGy=DdistGF
32 31 eqcomd φxPyPxKBABdistGx=EdistGDyKBCBdistGy=EdistGFDdistGF=xdistGy
33 1 12 2 14 15 17 18 20 32 tgcgrcomlr φxPyPxKBABdistGx=EdistGDyKBCBdistGy=EdistGFFdistGD=ydistGx
34 1 12 13 14 15 16 17 18 19 20 23 25 33 trgcgr φxPyPxKBABdistGx=EdistGDyKBCBdistGy=EdistGF⟨“DEF”⟩𝒢G⟨“xBy”⟩
35 34 29 30 3jca φxPyPxKBABdistGx=EdistGDyKBCBdistGy=EdistGF⟨“DEF”⟩𝒢G⟨“xBy”⟩xKBAyKBC
36 1 2 4 3 5 6 7 8 9 10 11 cgrane1 φAB
37 1 2 4 3 5 6 7 8 9 10 11 cgrane3 φED
38 1 2 4 6 9 8 3 5 12 36 37 hlcgrex φxPxKBABdistGx=EdistGD
39 1 2 4 3 5 6 7 8 9 10 11 cgrane2 φBC
40 39 necomd φCB
41 1 2 4 3 5 6 7 8 9 10 11 cgrane4 φEF
42 1 2 4 6 9 10 3 7 12 40 41 hlcgrex φyPyKBCBdistGy=EdistGF
43 reeanv xPyPxKBABdistGx=EdistGDyKBCBdistGy=EdistGFxPxKBABdistGx=EdistGDyPyKBCBdistGy=EdistGF
44 38 42 43 sylanbrc φxPyPxKBABdistGx=EdistGDyKBCBdistGy=EdistGF
45 35 44 reximddv2 φxPyP⟨“DEF”⟩𝒢G⟨“xBy”⟩xKBAyKBC
46 1 2 4 3 8 9 10 5 6 7 iscgra φ⟨“DEF”⟩𝒢G⟨“ABC”⟩xPyP⟨“DEF”⟩𝒢G⟨“xBy”⟩xKBAyKBC
47 45 46 mpbird φ⟨“DEF”⟩𝒢G⟨“ABC”⟩