Metamath Proof Explorer


Theorem cgracom

Description: Angle congruence commutes. Theorem 11.7 of Schwabhauser p. 97. (Contributed by Thierry Arnoux, 5-Mar-2020)

Ref Expression
Hypotheses cgraid.p 𝑃 = ( Base ‘ 𝐺 )
cgraid.i 𝐼 = ( Itv ‘ 𝐺 )
cgraid.g ( 𝜑𝐺 ∈ TarskiG )
cgraid.k 𝐾 = ( hlG ‘ 𝐺 )
cgraid.a ( 𝜑𝐴𝑃 )
cgraid.b ( 𝜑𝐵𝑃 )
cgraid.c ( 𝜑𝐶𝑃 )
cgracom.d ( 𝜑𝐷𝑃 )
cgracom.e ( 𝜑𝐸𝑃 )
cgracom.f ( 𝜑𝐹𝑃 )
cgracom.1 ( 𝜑 → ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrA ‘ 𝐺 ) ⟨“ 𝐷 𝐸 𝐹 ”⟩ )
Assertion cgracom ( 𝜑 → ⟨“ 𝐷 𝐸 𝐹 ”⟩ ( cgrA ‘ 𝐺 ) ⟨“ 𝐴 𝐵 𝐶 ”⟩ )

Proof

Step Hyp Ref Expression
1 cgraid.p 𝑃 = ( Base ‘ 𝐺 )
2 cgraid.i 𝐼 = ( Itv ‘ 𝐺 )
3 cgraid.g ( 𝜑𝐺 ∈ TarskiG )
4 cgraid.k 𝐾 = ( hlG ‘ 𝐺 )
5 cgraid.a ( 𝜑𝐴𝑃 )
6 cgraid.b ( 𝜑𝐵𝑃 )
7 cgraid.c ( 𝜑𝐶𝑃 )
8 cgracom.d ( 𝜑𝐷𝑃 )
9 cgracom.e ( 𝜑𝐸𝑃 )
10 cgracom.f ( 𝜑𝐹𝑃 )
11 cgracom.1 ( 𝜑 → ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrA ‘ 𝐺 ) ⟨“ 𝐷 𝐸 𝐹 ”⟩ )
12 eqid ( dist ‘ 𝐺 ) = ( dist ‘ 𝐺 )
13 eqid ( cgrG ‘ 𝐺 ) = ( cgrG ‘ 𝐺 )
14 3 ad3antrrr ( ( ( ( 𝜑𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ ( ( 𝑥 ( 𝐾𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) ) ∧ ( 𝑦 ( 𝐾𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) ) → 𝐺 ∈ TarskiG )
15 8 ad3antrrr ( ( ( ( 𝜑𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ ( ( 𝑥 ( 𝐾𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) ) ∧ ( 𝑦 ( 𝐾𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) ) → 𝐷𝑃 )
16 9 ad3antrrr ( ( ( ( 𝜑𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ ( ( 𝑥 ( 𝐾𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) ) ∧ ( 𝑦 ( 𝐾𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) ) → 𝐸𝑃 )
17 10 ad3antrrr ( ( ( ( 𝜑𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ ( ( 𝑥 ( 𝐾𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) ) ∧ ( 𝑦 ( 𝐾𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) ) → 𝐹𝑃 )
18 simpllr ( ( ( ( 𝜑𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ ( ( 𝑥 ( 𝐾𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) ) ∧ ( 𝑦 ( 𝐾𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) ) → 𝑥𝑃 )
19 6 ad3antrrr ( ( ( ( 𝜑𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ ( ( 𝑥 ( 𝐾𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) ) ∧ ( 𝑦 ( 𝐾𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) ) → 𝐵𝑃 )
20 simplr ( ( ( ( 𝜑𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ ( ( 𝑥 ( 𝐾𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) ) ∧ ( 𝑦 ( 𝐾𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) ) → 𝑦𝑃 )
21 simprlr ( ( ( ( 𝜑𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ ( ( 𝑥 ( 𝐾𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) ) ∧ ( 𝑦 ( 𝐾𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) ) → ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) )
22 21 eqcomd ( ( ( ( 𝜑𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ ( ( 𝑥 ( 𝐾𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) ) ∧ ( 𝑦 ( 𝐾𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) ) → ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) )
23 1 12 2 14 16 15 19 18 22 tgcgrcomlr ( ( ( ( 𝜑𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ ( ( 𝑥 ( 𝐾𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) ) ∧ ( 𝑦 ( 𝐾𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) ) → ( 𝐷 ( dist ‘ 𝐺 ) 𝐸 ) = ( 𝑥 ( dist ‘ 𝐺 ) 𝐵 ) )
24 simprrr ( ( ( ( 𝜑𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ ( ( 𝑥 ( 𝐾𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) ) ∧ ( 𝑦 ( 𝐾𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) ) → ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) )
25 24 eqcomd ( ( ( ( 𝜑𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ ( ( 𝑥 ( 𝐾𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) ) ∧ ( 𝑦 ( 𝐾𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) ) → ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) )
26 5 ad3antrrr ( ( ( ( 𝜑𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ ( ( 𝑥 ( 𝐾𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) ) ∧ ( 𝑦 ( 𝐾𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) ) → 𝐴𝑃 )
27 7 ad3antrrr ( ( ( ( 𝜑𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ ( ( 𝑥 ( 𝐾𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) ) ∧ ( 𝑦 ( 𝐾𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) ) → 𝐶𝑃 )
28 11 ad3antrrr ( ( ( ( 𝜑𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ ( ( 𝑥 ( 𝐾𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) ) ∧ ( 𝑦 ( 𝐾𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) ) → ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrA ‘ 𝐺 ) ⟨“ 𝐷 𝐸 𝐹 ”⟩ )
29 simprll ( ( ( ( 𝜑𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ ( ( 𝑥 ( 𝐾𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) ) ∧ ( 𝑦 ( 𝐾𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) ) → 𝑥 ( 𝐾𝐵 ) 𝐴 )
30 simprrl ( ( ( ( 𝜑𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ ( ( 𝑥 ( 𝐾𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) ) ∧ ( 𝑦 ( 𝐾𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) ) → 𝑦 ( 𝐾𝐵 ) 𝐶 )
31 1 2 4 14 26 19 27 15 16 17 28 18 12 20 29 30 21 24 cgracgr ( ( ( ( 𝜑𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ ( ( 𝑥 ( 𝐾𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) ) ∧ ( 𝑦 ( 𝐾𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) ) → ( 𝑥 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐹 ) )
32 31 eqcomd ( ( ( ( 𝜑𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ ( ( 𝑥 ( 𝐾𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) ) ∧ ( 𝑦 ( 𝐾𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) ) → ( 𝐷 ( dist ‘ 𝐺 ) 𝐹 ) = ( 𝑥 ( dist ‘ 𝐺 ) 𝑦 ) )
33 1 12 2 14 15 17 18 20 32 tgcgrcomlr ( ( ( ( 𝜑𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ ( ( 𝑥 ( 𝐾𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) ) ∧ ( 𝑦 ( 𝐾𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) ) → ( 𝐹 ( dist ‘ 𝐺 ) 𝐷 ) = ( 𝑦 ( dist ‘ 𝐺 ) 𝑥 ) )
34 1 12 13 14 15 16 17 18 19 20 23 25 33 trgcgr ( ( ( ( 𝜑𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ ( ( 𝑥 ( 𝐾𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) ) ∧ ( 𝑦 ( 𝐾𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) ) → ⟨“ 𝐷 𝐸 𝐹 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑥 𝐵 𝑦 ”⟩ )
35 34 29 30 3jca ( ( ( ( 𝜑𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ ( ( 𝑥 ( 𝐾𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) ) ∧ ( 𝑦 ( 𝐾𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) ) → ( ⟨“ 𝐷 𝐸 𝐹 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑥 𝐵 𝑦 ”⟩ ∧ 𝑥 ( 𝐾𝐵 ) 𝐴𝑦 ( 𝐾𝐵 ) 𝐶 ) )
36 1 2 4 3 5 6 7 8 9 10 11 cgrane1 ( 𝜑𝐴𝐵 )
37 1 2 4 3 5 6 7 8 9 10 11 cgrane3 ( 𝜑𝐸𝐷 )
38 1 2 4 6 9 8 3 5 12 36 37 hlcgrex ( 𝜑 → ∃ 𝑥𝑃 ( 𝑥 ( 𝐾𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) ) )
39 1 2 4 3 5 6 7 8 9 10 11 cgrane2 ( 𝜑𝐵𝐶 )
40 39 necomd ( 𝜑𝐶𝐵 )
41 1 2 4 3 5 6 7 8 9 10 11 cgrane4 ( 𝜑𝐸𝐹 )
42 1 2 4 6 9 10 3 7 12 40 41 hlcgrex ( 𝜑 → ∃ 𝑦𝑃 ( 𝑦 ( 𝐾𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) )
43 reeanv ( ∃ 𝑥𝑃𝑦𝑃 ( ( 𝑥 ( 𝐾𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) ) ∧ ( 𝑦 ( 𝐾𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) ↔ ( ∃ 𝑥𝑃 ( 𝑥 ( 𝐾𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) ) ∧ ∃ 𝑦𝑃 ( 𝑦 ( 𝐾𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) )
44 38 42 43 sylanbrc ( 𝜑 → ∃ 𝑥𝑃𝑦𝑃 ( ( 𝑥 ( 𝐾𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) ) ∧ ( 𝑦 ( 𝐾𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) )
45 35 44 reximddv2 ( 𝜑 → ∃ 𝑥𝑃𝑦𝑃 ( ⟨“ 𝐷 𝐸 𝐹 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑥 𝐵 𝑦 ”⟩ ∧ 𝑥 ( 𝐾𝐵 ) 𝐴𝑦 ( 𝐾𝐵 ) 𝐶 ) )
46 1 2 4 3 8 9 10 5 6 7 iscgra ( 𝜑 → ( ⟨“ 𝐷 𝐸 𝐹 ”⟩ ( cgrA ‘ 𝐺 ) ⟨“ 𝐴 𝐵 𝐶 ”⟩ ↔ ∃ 𝑥𝑃𝑦𝑃 ( ⟨“ 𝐷 𝐸 𝐹 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑥 𝐵 𝑦 ”⟩ ∧ 𝑥 ( 𝐾𝐵 ) 𝐴𝑦 ( 𝐾𝐵 ) 𝐶 ) ) )
47 45 46 mpbird ( 𝜑 → ⟨“ 𝐷 𝐸 𝐹 ”⟩ ( cgrA ‘ 𝐺 ) ⟨“ 𝐴 𝐵 𝐶 ”⟩ )