Step |
Hyp |
Ref |
Expression |
1 |
|
cgraid.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
cgraid.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
3 |
|
cgraid.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
4 |
|
cgraid.k |
⊢ 𝐾 = ( hlG ‘ 𝐺 ) |
5 |
|
cgraid.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
6 |
|
cgraid.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
7 |
|
cgraid.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
8 |
|
cgracom.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) |
9 |
|
cgracom.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝑃 ) |
10 |
|
cgracom.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑃 ) |
11 |
|
cgracom.1 |
⊢ ( 𝜑 → 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 ”〉 ) |
12 |
|
eqid |
⊢ ( dist ‘ 𝐺 ) = ( dist ‘ 𝐺 ) |
13 |
|
eqid |
⊢ ( cgrG ‘ 𝐺 ) = ( cgrG ‘ 𝐺 ) |
14 |
3
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) ) → 𝐺 ∈ TarskiG ) |
15 |
8
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) ) → 𝐷 ∈ 𝑃 ) |
16 |
9
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) ) → 𝐸 ∈ 𝑃 ) |
17 |
10
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) ) → 𝐹 ∈ 𝑃 ) |
18 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) ) → 𝑥 ∈ 𝑃 ) |
19 |
6
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) ) → 𝐵 ∈ 𝑃 ) |
20 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) ) → 𝑦 ∈ 𝑃 ) |
21 |
|
simprlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) ) → ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) ) |
22 |
21
|
eqcomd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) ) → ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) ) |
23 |
1 12 2 14 16 15 19 18 22
|
tgcgrcomlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) ) → ( 𝐷 ( dist ‘ 𝐺 ) 𝐸 ) = ( 𝑥 ( dist ‘ 𝐺 ) 𝐵 ) ) |
24 |
|
simprrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) ) → ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) |
25 |
24
|
eqcomd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) ) → ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) ) |
26 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) ) → 𝐴 ∈ 𝑃 ) |
27 |
7
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) ) → 𝐶 ∈ 𝑃 ) |
28 |
11
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) ) → 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 ”〉 ) |
29 |
|
simprll |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) ) → 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐴 ) |
30 |
|
simprrl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) ) → 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐶 ) |
31 |
1 2 4 14 26 19 27 15 16 17 28 18 12 20 29 30 21 24
|
cgracgr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) ) → ( 𝑥 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐹 ) ) |
32 |
31
|
eqcomd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) ) → ( 𝐷 ( dist ‘ 𝐺 ) 𝐹 ) = ( 𝑥 ( dist ‘ 𝐺 ) 𝑦 ) ) |
33 |
1 12 2 14 15 17 18 20 32
|
tgcgrcomlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) ) → ( 𝐹 ( dist ‘ 𝐺 ) 𝐷 ) = ( 𝑦 ( dist ‘ 𝐺 ) 𝑥 ) ) |
34 |
1 12 13 14 15 16 17 18 19 20 23 25 33
|
trgcgr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) ) → 〈“ 𝐷 𝐸 𝐹 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑥 𝐵 𝑦 ”〉 ) |
35 |
34 29 30
|
3jca |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) ) → ( 〈“ 𝐷 𝐸 𝐹 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑥 𝐵 𝑦 ”〉 ∧ 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐴 ∧ 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐶 ) ) |
36 |
1 2 4 3 5 6 7 8 9 10 11
|
cgrane1 |
⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) |
37 |
1 2 4 3 5 6 7 8 9 10 11
|
cgrane3 |
⊢ ( 𝜑 → 𝐸 ≠ 𝐷 ) |
38 |
1 2 4 6 9 8 3 5 12 36 37
|
hlcgrex |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝑃 ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) ) ) |
39 |
1 2 4 3 5 6 7 8 9 10 11
|
cgrane2 |
⊢ ( 𝜑 → 𝐵 ≠ 𝐶 ) |
40 |
39
|
necomd |
⊢ ( 𝜑 → 𝐶 ≠ 𝐵 ) |
41 |
1 2 4 3 5 6 7 8 9 10 11
|
cgrane4 |
⊢ ( 𝜑 → 𝐸 ≠ 𝐹 ) |
42 |
1 2 4 6 9 10 3 7 12 40 41
|
hlcgrex |
⊢ ( 𝜑 → ∃ 𝑦 ∈ 𝑃 ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) |
43 |
|
reeanv |
⊢ ( ∃ 𝑥 ∈ 𝑃 ∃ 𝑦 ∈ 𝑃 ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) ↔ ( ∃ 𝑥 ∈ 𝑃 ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) ) ∧ ∃ 𝑦 ∈ 𝑃 ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) ) |
44 |
38 42 43
|
sylanbrc |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝑃 ∃ 𝑦 ∈ 𝑃 ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) ) |
45 |
35 44
|
reximddv2 |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝑃 ∃ 𝑦 ∈ 𝑃 ( 〈“ 𝐷 𝐸 𝐹 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑥 𝐵 𝑦 ”〉 ∧ 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐴 ∧ 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐶 ) ) |
46 |
1 2 4 3 8 9 10 5 6 7
|
iscgra |
⊢ ( 𝜑 → ( 〈“ 𝐷 𝐸 𝐹 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉 ↔ ∃ 𝑥 ∈ 𝑃 ∃ 𝑦 ∈ 𝑃 ( 〈“ 𝐷 𝐸 𝐹 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑥 𝐵 𝑦 ”〉 ∧ 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐴 ∧ 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐶 ) ) ) |
47 |
45 46
|
mpbird |
⊢ ( 𝜑 → 〈“ 𝐷 𝐸 𝐹 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉 ) |