Step |
Hyp |
Ref |
Expression |
1 |
|
cgraid.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
cgraid.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
3 |
|
cgraid.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
4 |
|
cgraid.k |
⊢ 𝐾 = ( hlG ‘ 𝐺 ) |
5 |
|
cgraid.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
6 |
|
cgraid.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
7 |
|
cgraid.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
8 |
|
cgracom.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) |
9 |
|
cgracom.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝑃 ) |
10 |
|
cgracom.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑃 ) |
11 |
|
cgracom.1 |
⊢ ( 𝜑 → 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 ”〉 ) |
12 |
|
cgratr.h |
⊢ ( 𝜑 → 𝐻 ∈ 𝑃 ) |
13 |
|
cgratr.i |
⊢ ( 𝜑 → 𝑈 ∈ 𝑃 ) |
14 |
|
cgratr.j |
⊢ ( 𝜑 → 𝐽 ∈ 𝑃 ) |
15 |
|
cgratr.1 |
⊢ ( 𝜑 → 〈“ 𝐷 𝐸 𝐹 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐻 𝑈 𝐽 ”〉 ) |
16 |
|
eqid |
⊢ ( dist ‘ 𝐺 ) = ( dist ‘ 𝐺 ) |
17 |
|
eqid |
⊢ ( cgrG ‘ 𝐺 ) = ( cgrG ‘ 𝐺 ) |
18 |
3
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) → 𝐺 ∈ TarskiG ) |
19 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) → 𝐴 ∈ 𝑃 ) |
20 |
6
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) → 𝐵 ∈ 𝑃 ) |
21 |
7
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) → 𝐶 ∈ 𝑃 ) |
22 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) → 𝑥 ∈ 𝑃 ) |
23 |
13
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) → 𝑈 ∈ 𝑃 ) |
24 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) → 𝑦 ∈ 𝑃 ) |
25 |
|
simprlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) → ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) |
26 |
25
|
eqcomd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) → ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) = ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 ) ) |
27 |
1 16 2 18 20 19 23 22 26
|
tgcgrcomlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) → ( 𝐴 ( dist ‘ 𝐺 ) 𝐵 ) = ( 𝑥 ( dist ‘ 𝐺 ) 𝑈 ) ) |
28 |
|
simprrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) → ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) |
29 |
28
|
eqcomd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) → ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) = ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 ) ) |
30 |
18
|
ad3antrrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) ∧ 𝑢 ∈ 𝑃 ) ∧ 𝑣 ∈ 𝑃 ) ∧ ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉 ∧ 𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷 ∧ 𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) ) → 𝐺 ∈ TarskiG ) |
31 |
19
|
ad3antrrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) ∧ 𝑢 ∈ 𝑃 ) ∧ 𝑣 ∈ 𝑃 ) ∧ ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉 ∧ 𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷 ∧ 𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) ) → 𝐴 ∈ 𝑃 ) |
32 |
20
|
ad3antrrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) ∧ 𝑢 ∈ 𝑃 ) ∧ 𝑣 ∈ 𝑃 ) ∧ ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉 ∧ 𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷 ∧ 𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) ) → 𝐵 ∈ 𝑃 ) |
33 |
21
|
ad3antrrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) ∧ 𝑢 ∈ 𝑃 ) ∧ 𝑣 ∈ 𝑃 ) ∧ ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉 ∧ 𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷 ∧ 𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) ) → 𝐶 ∈ 𝑃 ) |
34 |
|
simpllr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) ∧ 𝑢 ∈ 𝑃 ) ∧ 𝑣 ∈ 𝑃 ) ∧ ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉 ∧ 𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷 ∧ 𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) ) → 𝑢 ∈ 𝑃 ) |
35 |
9
|
ad6antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) ∧ 𝑢 ∈ 𝑃 ) ∧ 𝑣 ∈ 𝑃 ) ∧ ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉 ∧ 𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷 ∧ 𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) ) → 𝐸 ∈ 𝑃 ) |
36 |
|
simplr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) ∧ 𝑢 ∈ 𝑃 ) ∧ 𝑣 ∈ 𝑃 ) ∧ ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉 ∧ 𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷 ∧ 𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) ) → 𝑣 ∈ 𝑃 ) |
37 |
|
simpr1 |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) ∧ 𝑢 ∈ 𝑃 ) ∧ 𝑣 ∈ 𝑃 ) ∧ ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉 ∧ 𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷 ∧ 𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) ) → 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉 ) |
38 |
1 16 2 17 30 31 32 33 34 35 36 37
|
cgr3simp3 |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) ∧ 𝑢 ∈ 𝑃 ) ∧ 𝑣 ∈ 𝑃 ) ∧ ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉 ∧ 𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷 ∧ 𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) ) → ( 𝐶 ( dist ‘ 𝐺 ) 𝐴 ) = ( 𝑣 ( dist ‘ 𝐺 ) 𝑢 ) ) |
39 |
22
|
ad3antrrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) ∧ 𝑢 ∈ 𝑃 ) ∧ 𝑣 ∈ 𝑃 ) ∧ ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉 ∧ 𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷 ∧ 𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) ) → 𝑥 ∈ 𝑃 ) |
40 |
24
|
ad3antrrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) ∧ 𝑢 ∈ 𝑃 ) ∧ 𝑣 ∈ 𝑃 ) ∧ ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉 ∧ 𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷 ∧ 𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) ) → 𝑦 ∈ 𝑃 ) |
41 |
8
|
ad6antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) ∧ 𝑢 ∈ 𝑃 ) ∧ 𝑣 ∈ 𝑃 ) ∧ ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉 ∧ 𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷 ∧ 𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) ) → 𝐷 ∈ 𝑃 ) |
42 |
10
|
ad6antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) ∧ 𝑢 ∈ 𝑃 ) ∧ 𝑣 ∈ 𝑃 ) ∧ ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉 ∧ 𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷 ∧ 𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) ) → 𝐹 ∈ 𝑃 ) |
43 |
23
|
ad3antrrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) ∧ 𝑢 ∈ 𝑃 ) ∧ 𝑣 ∈ 𝑃 ) ∧ ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉 ∧ 𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷 ∧ 𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) ) → 𝑈 ∈ 𝑃 ) |
44 |
14
|
ad6antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) ∧ 𝑢 ∈ 𝑃 ) ∧ 𝑣 ∈ 𝑃 ) ∧ ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉 ∧ 𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷 ∧ 𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) ) → 𝐽 ∈ 𝑃 ) |
45 |
12
|
ad6antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) ∧ 𝑢 ∈ 𝑃 ) ∧ 𝑣 ∈ 𝑃 ) ∧ ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉 ∧ 𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷 ∧ 𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) ) → 𝐻 ∈ 𝑃 ) |
46 |
15
|
ad6antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) ∧ 𝑢 ∈ 𝑃 ) ∧ 𝑣 ∈ 𝑃 ) ∧ ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉 ∧ 𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷 ∧ 𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) ) → 〈“ 𝐷 𝐸 𝐹 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐻 𝑈 𝐽 ”〉 ) |
47 |
|
simprll |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) → 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻 ) |
48 |
47
|
ad3antrrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) ∧ 𝑢 ∈ 𝑃 ) ∧ 𝑣 ∈ 𝑃 ) ∧ ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉 ∧ 𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷 ∧ 𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) ) → 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻 ) |
49 |
1 2 4 30 41 35 42 45 43 44 46 39 48
|
cgrahl1 |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) ∧ 𝑢 ∈ 𝑃 ) ∧ 𝑣 ∈ 𝑃 ) ∧ ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉 ∧ 𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷 ∧ 𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) ) → 〈“ 𝐷 𝐸 𝐹 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝑥 𝑈 𝐽 ”〉 ) |
50 |
|
simprrl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) → 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽 ) |
51 |
50
|
ad3antrrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) ∧ 𝑢 ∈ 𝑃 ) ∧ 𝑣 ∈ 𝑃 ) ∧ ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉 ∧ 𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷 ∧ 𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) ) → 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽 ) |
52 |
1 2 4 30 41 35 42 39 43 44 49 40 51
|
cgrahl2 |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) ∧ 𝑢 ∈ 𝑃 ) ∧ 𝑣 ∈ 𝑃 ) ∧ ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉 ∧ 𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷 ∧ 𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) ) → 〈“ 𝐷 𝐸 𝐹 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝑥 𝑈 𝑦 ”〉 ) |
53 |
|
simpr2 |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) ∧ 𝑢 ∈ 𝑃 ) ∧ 𝑣 ∈ 𝑃 ) ∧ ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉 ∧ 𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷 ∧ 𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) ) → 𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷 ) |
54 |
|
simpr3 |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) ∧ 𝑢 ∈ 𝑃 ) ∧ 𝑣 ∈ 𝑃 ) ∧ ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉 ∧ 𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷 ∧ 𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) ) → 𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) |
55 |
1 16 2 17 30 31 32 33 34 35 36 37
|
cgr3simp1 |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) ∧ 𝑢 ∈ 𝑃 ) ∧ 𝑣 ∈ 𝑃 ) ∧ ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉 ∧ 𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷 ∧ 𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) ) → ( 𝐴 ( dist ‘ 𝐺 ) 𝐵 ) = ( 𝑢 ( dist ‘ 𝐺 ) 𝐸 ) ) |
56 |
55
|
eqcomd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) ∧ 𝑢 ∈ 𝑃 ) ∧ 𝑣 ∈ 𝑃 ) ∧ ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉 ∧ 𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷 ∧ 𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) ) → ( 𝑢 ( dist ‘ 𝐺 ) 𝐸 ) = ( 𝐴 ( dist ‘ 𝐺 ) 𝐵 ) ) |
57 |
1 16 2 30 34 35 31 32 56
|
tgcgrcomlr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) ∧ 𝑢 ∈ 𝑃 ) ∧ 𝑣 ∈ 𝑃 ) ∧ ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉 ∧ 𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷 ∧ 𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) ) → ( 𝐸 ( dist ‘ 𝐺 ) 𝑢 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) |
58 |
26
|
ad3antrrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) ∧ 𝑢 ∈ 𝑃 ) ∧ 𝑣 ∈ 𝑃 ) ∧ ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉 ∧ 𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷 ∧ 𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) ) → ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) = ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 ) ) |
59 |
57 58
|
eqtrd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) ∧ 𝑢 ∈ 𝑃 ) ∧ 𝑣 ∈ 𝑃 ) ∧ ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉 ∧ 𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷 ∧ 𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) ) → ( 𝐸 ( dist ‘ 𝐺 ) 𝑢 ) = ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 ) ) |
60 |
1 16 2 17 30 31 32 33 34 35 36 37
|
cgr3simp2 |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) ∧ 𝑢 ∈ 𝑃 ) ∧ 𝑣 ∈ 𝑃 ) ∧ ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉 ∧ 𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷 ∧ 𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) ) → ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝑣 ) ) |
61 |
29
|
ad3antrrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) ∧ 𝑢 ∈ 𝑃 ) ∧ 𝑣 ∈ 𝑃 ) ∧ ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉 ∧ 𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷 ∧ 𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) ) → ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) = ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 ) ) |
62 |
60 61
|
eqtr3d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) ∧ 𝑢 ∈ 𝑃 ) ∧ 𝑣 ∈ 𝑃 ) ∧ ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉 ∧ 𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷 ∧ 𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) ) → ( 𝐸 ( dist ‘ 𝐺 ) 𝑣 ) = ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 ) ) |
63 |
1 2 4 30 41 35 42 39 43 40 52 34 16 36 53 54 59 62
|
cgracgr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) ∧ 𝑢 ∈ 𝑃 ) ∧ 𝑣 ∈ 𝑃 ) ∧ ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉 ∧ 𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷 ∧ 𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) ) → ( 𝑢 ( dist ‘ 𝐺 ) 𝑣 ) = ( 𝑥 ( dist ‘ 𝐺 ) 𝑦 ) ) |
64 |
1 16 2 30 34 36 39 40 63
|
tgcgrcomlr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) ∧ 𝑢 ∈ 𝑃 ) ∧ 𝑣 ∈ 𝑃 ) ∧ ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉 ∧ 𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷 ∧ 𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) ) → ( 𝑣 ( dist ‘ 𝐺 ) 𝑢 ) = ( 𝑦 ( dist ‘ 𝐺 ) 𝑥 ) ) |
65 |
38 64
|
eqtrd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) ∧ 𝑢 ∈ 𝑃 ) ∧ 𝑣 ∈ 𝑃 ) ∧ ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉 ∧ 𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷 ∧ 𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) ) → ( 𝐶 ( dist ‘ 𝐺 ) 𝐴 ) = ( 𝑦 ( dist ‘ 𝐺 ) 𝑥 ) ) |
66 |
1 2 4 3 5 6 7 8 9 10
|
iscgra |
⊢ ( 𝜑 → ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 ”〉 ↔ ∃ 𝑢 ∈ 𝑃 ∃ 𝑣 ∈ 𝑃 ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉 ∧ 𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷 ∧ 𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) ) ) |
67 |
11 66
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑢 ∈ 𝑃 ∃ 𝑣 ∈ 𝑃 ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉 ∧ 𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷 ∧ 𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) ) |
68 |
67
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) → ∃ 𝑢 ∈ 𝑃 ∃ 𝑣 ∈ 𝑃 ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉 ∧ 𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷 ∧ 𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) ) |
69 |
65 68
|
r19.29vva |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) → ( 𝐶 ( dist ‘ 𝐺 ) 𝐴 ) = ( 𝑦 ( dist ‘ 𝐺 ) 𝑥 ) ) |
70 |
1 16 17 18 19 20 21 22 23 24 27 29 69
|
trgcgr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) → 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑥 𝑈 𝑦 ”〉 ) |
71 |
70 47 50
|
3jca |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) → ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑥 𝑈 𝑦 ”〉 ∧ 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻 ∧ 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽 ) ) |
72 |
1 2 4 3 8 9 10 12 13 14 15
|
cgrane3 |
⊢ ( 𝜑 → 𝑈 ≠ 𝐻 ) |
73 |
72
|
necomd |
⊢ ( 𝜑 → 𝐻 ≠ 𝑈 ) |
74 |
1 2 4 3 5 6 7 8 9 10 11
|
cgrane1 |
⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) |
75 |
74
|
necomd |
⊢ ( 𝜑 → 𝐵 ≠ 𝐴 ) |
76 |
1 2 4 13 6 5 3 12 16 73 75
|
hlcgrex |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝑃 ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ) |
77 |
1 2 4 3 8 9 10 12 13 14 15
|
cgrane4 |
⊢ ( 𝜑 → 𝑈 ≠ 𝐽 ) |
78 |
77
|
necomd |
⊢ ( 𝜑 → 𝐽 ≠ 𝑈 ) |
79 |
1 2 4 3 5 6 7 8 9 10 11
|
cgrane2 |
⊢ ( 𝜑 → 𝐵 ≠ 𝐶 ) |
80 |
1 2 4 13 6 7 3 14 16 78 79
|
hlcgrex |
⊢ ( 𝜑 → ∃ 𝑦 ∈ 𝑃 ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) |
81 |
|
reeanv |
⊢ ( ∃ 𝑥 ∈ 𝑃 ∃ 𝑦 ∈ 𝑃 ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ↔ ( ∃ 𝑥 ∈ 𝑃 ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ∃ 𝑦 ∈ 𝑃 ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) |
82 |
76 80 81
|
sylanbrc |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝑃 ∃ 𝑦 ∈ 𝑃 ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽 ∧ ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) |
83 |
71 82
|
reximddv2 |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝑃 ∃ 𝑦 ∈ 𝑃 ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑥 𝑈 𝑦 ”〉 ∧ 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻 ∧ 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽 ) ) |
84 |
1 2 4 3 5 6 7 12 13 14
|
iscgra |
⊢ ( 𝜑 → ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐻 𝑈 𝐽 ”〉 ↔ ∃ 𝑥 ∈ 𝑃 ∃ 𝑦 ∈ 𝑃 ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑥 𝑈 𝑦 ”〉 ∧ 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻 ∧ 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽 ) ) ) |
85 |
83 84
|
mpbird |
⊢ ( 𝜑 → 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐻 𝑈 𝐽 ”〉 ) |