| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cgraid.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | cgraid.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 3 |  | cgraid.g | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 4 |  | cgraid.k | ⊢ 𝐾  =  ( hlG ‘ 𝐺 ) | 
						
							| 5 |  | cgraid.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑃 ) | 
						
							| 6 |  | cgraid.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑃 ) | 
						
							| 7 |  | cgraid.c | ⊢ ( 𝜑  →  𝐶  ∈  𝑃 ) | 
						
							| 8 |  | cgracom.d | ⊢ ( 𝜑  →  𝐷  ∈  𝑃 ) | 
						
							| 9 |  | cgracom.e | ⊢ ( 𝜑  →  𝐸  ∈  𝑃 ) | 
						
							| 10 |  | cgracom.f | ⊢ ( 𝜑  →  𝐹  ∈  𝑃 ) | 
						
							| 11 |  | cgracom.1 | ⊢ ( 𝜑  →  〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 ”〉 ) | 
						
							| 12 |  | cgratr.h | ⊢ ( 𝜑  →  𝐻  ∈  𝑃 ) | 
						
							| 13 |  | cgratr.i | ⊢ ( 𝜑  →  𝑈  ∈  𝑃 ) | 
						
							| 14 |  | cgratr.j | ⊢ ( 𝜑  →  𝐽  ∈  𝑃 ) | 
						
							| 15 |  | cgratr.1 | ⊢ ( 𝜑  →  〈“ 𝐷 𝐸 𝐹 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐻 𝑈 𝐽 ”〉 ) | 
						
							| 16 |  | eqid | ⊢ ( dist ‘ 𝐺 )  =  ( dist ‘ 𝐺 ) | 
						
							| 17 |  | eqid | ⊢ ( cgrG ‘ 𝐺 )  =  ( cgrG ‘ 𝐺 ) | 
						
							| 18 | 3 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  →  𝐺  ∈  TarskiG ) | 
						
							| 19 | 5 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  →  𝐴  ∈  𝑃 ) | 
						
							| 20 | 6 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  →  𝐵  ∈  𝑃 ) | 
						
							| 21 | 7 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  →  𝐶  ∈  𝑃 ) | 
						
							| 22 |  | simpllr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  →  𝑥  ∈  𝑃 ) | 
						
							| 23 | 13 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  →  𝑈  ∈  𝑃 ) | 
						
							| 24 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  →  𝑦  ∈  𝑃 ) | 
						
							| 25 |  | simprlr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  →  ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) | 
						
							| 26 | 25 | eqcomd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  →  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 )  =  ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 ) ) | 
						
							| 27 | 1 16 2 18 20 19 23 22 26 | tgcgrcomlr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  →  ( 𝐴 ( dist ‘ 𝐺 ) 𝐵 )  =  ( 𝑥 ( dist ‘ 𝐺 ) 𝑈 ) ) | 
						
							| 28 |  | simprrr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  →  ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) | 
						
							| 29 | 28 | eqcomd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  →  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 )  =  ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 ) ) | 
						
							| 30 | 18 | ad3antrrr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  ∧  𝑢  ∈  𝑃 )  ∧  𝑣  ∈  𝑃 )  ∧  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉  ∧  𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷  ∧  𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) )  →  𝐺  ∈  TarskiG ) | 
						
							| 31 | 19 | ad3antrrr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  ∧  𝑢  ∈  𝑃 )  ∧  𝑣  ∈  𝑃 )  ∧  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉  ∧  𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷  ∧  𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) )  →  𝐴  ∈  𝑃 ) | 
						
							| 32 | 20 | ad3antrrr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  ∧  𝑢  ∈  𝑃 )  ∧  𝑣  ∈  𝑃 )  ∧  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉  ∧  𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷  ∧  𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) )  →  𝐵  ∈  𝑃 ) | 
						
							| 33 | 21 | ad3antrrr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  ∧  𝑢  ∈  𝑃 )  ∧  𝑣  ∈  𝑃 )  ∧  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉  ∧  𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷  ∧  𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) )  →  𝐶  ∈  𝑃 ) | 
						
							| 34 |  | simpllr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  ∧  𝑢  ∈  𝑃 )  ∧  𝑣  ∈  𝑃 )  ∧  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉  ∧  𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷  ∧  𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) )  →  𝑢  ∈  𝑃 ) | 
						
							| 35 | 9 | ad6antr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  ∧  𝑢  ∈  𝑃 )  ∧  𝑣  ∈  𝑃 )  ∧  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉  ∧  𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷  ∧  𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) )  →  𝐸  ∈  𝑃 ) | 
						
							| 36 |  | simplr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  ∧  𝑢  ∈  𝑃 )  ∧  𝑣  ∈  𝑃 )  ∧  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉  ∧  𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷  ∧  𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) )  →  𝑣  ∈  𝑃 ) | 
						
							| 37 |  | simpr1 | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  ∧  𝑢  ∈  𝑃 )  ∧  𝑣  ∈  𝑃 )  ∧  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉  ∧  𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷  ∧  𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) )  →  〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉 ) | 
						
							| 38 | 1 16 2 17 30 31 32 33 34 35 36 37 | cgr3simp3 | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  ∧  𝑢  ∈  𝑃 )  ∧  𝑣  ∈  𝑃 )  ∧  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉  ∧  𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷  ∧  𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) )  →  ( 𝐶 ( dist ‘ 𝐺 ) 𝐴 )  =  ( 𝑣 ( dist ‘ 𝐺 ) 𝑢 ) ) | 
						
							| 39 | 22 | ad3antrrr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  ∧  𝑢  ∈  𝑃 )  ∧  𝑣  ∈  𝑃 )  ∧  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉  ∧  𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷  ∧  𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) )  →  𝑥  ∈  𝑃 ) | 
						
							| 40 | 24 | ad3antrrr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  ∧  𝑢  ∈  𝑃 )  ∧  𝑣  ∈  𝑃 )  ∧  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉  ∧  𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷  ∧  𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) )  →  𝑦  ∈  𝑃 ) | 
						
							| 41 | 8 | ad6antr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  ∧  𝑢  ∈  𝑃 )  ∧  𝑣  ∈  𝑃 )  ∧  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉  ∧  𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷  ∧  𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) )  →  𝐷  ∈  𝑃 ) | 
						
							| 42 | 10 | ad6antr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  ∧  𝑢  ∈  𝑃 )  ∧  𝑣  ∈  𝑃 )  ∧  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉  ∧  𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷  ∧  𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) )  →  𝐹  ∈  𝑃 ) | 
						
							| 43 | 23 | ad3antrrr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  ∧  𝑢  ∈  𝑃 )  ∧  𝑣  ∈  𝑃 )  ∧  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉  ∧  𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷  ∧  𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) )  →  𝑈  ∈  𝑃 ) | 
						
							| 44 | 14 | ad6antr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  ∧  𝑢  ∈  𝑃 )  ∧  𝑣  ∈  𝑃 )  ∧  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉  ∧  𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷  ∧  𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) )  →  𝐽  ∈  𝑃 ) | 
						
							| 45 | 12 | ad6antr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  ∧  𝑢  ∈  𝑃 )  ∧  𝑣  ∈  𝑃 )  ∧  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉  ∧  𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷  ∧  𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) )  →  𝐻  ∈  𝑃 ) | 
						
							| 46 | 15 | ad6antr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  ∧  𝑢  ∈  𝑃 )  ∧  𝑣  ∈  𝑃 )  ∧  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉  ∧  𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷  ∧  𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) )  →  〈“ 𝐷 𝐸 𝐹 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐻 𝑈 𝐽 ”〉 ) | 
						
							| 47 |  | simprll | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  →  𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻 ) | 
						
							| 48 | 47 | ad3antrrr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  ∧  𝑢  ∈  𝑃 )  ∧  𝑣  ∈  𝑃 )  ∧  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉  ∧  𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷  ∧  𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) )  →  𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻 ) | 
						
							| 49 | 1 2 4 30 41 35 42 45 43 44 46 39 48 | cgrahl1 | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  ∧  𝑢  ∈  𝑃 )  ∧  𝑣  ∈  𝑃 )  ∧  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉  ∧  𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷  ∧  𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) )  →  〈“ 𝐷 𝐸 𝐹 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝑥 𝑈 𝐽 ”〉 ) | 
						
							| 50 |  | simprrl | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  →  𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽 ) | 
						
							| 51 | 50 | ad3antrrr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  ∧  𝑢  ∈  𝑃 )  ∧  𝑣  ∈  𝑃 )  ∧  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉  ∧  𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷  ∧  𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) )  →  𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽 ) | 
						
							| 52 | 1 2 4 30 41 35 42 39 43 44 49 40 51 | cgrahl2 | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  ∧  𝑢  ∈  𝑃 )  ∧  𝑣  ∈  𝑃 )  ∧  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉  ∧  𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷  ∧  𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) )  →  〈“ 𝐷 𝐸 𝐹 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝑥 𝑈 𝑦 ”〉 ) | 
						
							| 53 |  | simpr2 | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  ∧  𝑢  ∈  𝑃 )  ∧  𝑣  ∈  𝑃 )  ∧  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉  ∧  𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷  ∧  𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) )  →  𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷 ) | 
						
							| 54 |  | simpr3 | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  ∧  𝑢  ∈  𝑃 )  ∧  𝑣  ∈  𝑃 )  ∧  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉  ∧  𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷  ∧  𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) )  →  𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) | 
						
							| 55 | 1 16 2 17 30 31 32 33 34 35 36 37 | cgr3simp1 | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  ∧  𝑢  ∈  𝑃 )  ∧  𝑣  ∈  𝑃 )  ∧  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉  ∧  𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷  ∧  𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) )  →  ( 𝐴 ( dist ‘ 𝐺 ) 𝐵 )  =  ( 𝑢 ( dist ‘ 𝐺 ) 𝐸 ) ) | 
						
							| 56 | 55 | eqcomd | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  ∧  𝑢  ∈  𝑃 )  ∧  𝑣  ∈  𝑃 )  ∧  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉  ∧  𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷  ∧  𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) )  →  ( 𝑢 ( dist ‘ 𝐺 ) 𝐸 )  =  ( 𝐴 ( dist ‘ 𝐺 ) 𝐵 ) ) | 
						
							| 57 | 1 16 2 30 34 35 31 32 56 | tgcgrcomlr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  ∧  𝑢  ∈  𝑃 )  ∧  𝑣  ∈  𝑃 )  ∧  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉  ∧  𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷  ∧  𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) )  →  ( 𝐸 ( dist ‘ 𝐺 ) 𝑢 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) | 
						
							| 58 | 26 | ad3antrrr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  ∧  𝑢  ∈  𝑃 )  ∧  𝑣  ∈  𝑃 )  ∧  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉  ∧  𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷  ∧  𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) )  →  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 )  =  ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 ) ) | 
						
							| 59 | 57 58 | eqtrd | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  ∧  𝑢  ∈  𝑃 )  ∧  𝑣  ∈  𝑃 )  ∧  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉  ∧  𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷  ∧  𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) )  →  ( 𝐸 ( dist ‘ 𝐺 ) 𝑢 )  =  ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 ) ) | 
						
							| 60 | 1 16 2 17 30 31 32 33 34 35 36 37 | cgr3simp2 | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  ∧  𝑢  ∈  𝑃 )  ∧  𝑣  ∈  𝑃 )  ∧  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉  ∧  𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷  ∧  𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) )  →  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 )  =  ( 𝐸 ( dist ‘ 𝐺 ) 𝑣 ) ) | 
						
							| 61 | 29 | ad3antrrr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  ∧  𝑢  ∈  𝑃 )  ∧  𝑣  ∈  𝑃 )  ∧  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉  ∧  𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷  ∧  𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) )  →  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 )  =  ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 ) ) | 
						
							| 62 | 60 61 | eqtr3d | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  ∧  𝑢  ∈  𝑃 )  ∧  𝑣  ∈  𝑃 )  ∧  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉  ∧  𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷  ∧  𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) )  →  ( 𝐸 ( dist ‘ 𝐺 ) 𝑣 )  =  ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 ) ) | 
						
							| 63 | 1 2 4 30 41 35 42 39 43 40 52 34 16 36 53 54 59 62 | cgracgr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  ∧  𝑢  ∈  𝑃 )  ∧  𝑣  ∈  𝑃 )  ∧  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉  ∧  𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷  ∧  𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) )  →  ( 𝑢 ( dist ‘ 𝐺 ) 𝑣 )  =  ( 𝑥 ( dist ‘ 𝐺 ) 𝑦 ) ) | 
						
							| 64 | 1 16 2 30 34 36 39 40 63 | tgcgrcomlr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  ∧  𝑢  ∈  𝑃 )  ∧  𝑣  ∈  𝑃 )  ∧  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉  ∧  𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷  ∧  𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) )  →  ( 𝑣 ( dist ‘ 𝐺 ) 𝑢 )  =  ( 𝑦 ( dist ‘ 𝐺 ) 𝑥 ) ) | 
						
							| 65 | 38 64 | eqtrd | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  ∧  𝑢  ∈  𝑃 )  ∧  𝑣  ∈  𝑃 )  ∧  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉  ∧  𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷  ∧  𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) )  →  ( 𝐶 ( dist ‘ 𝐺 ) 𝐴 )  =  ( 𝑦 ( dist ‘ 𝐺 ) 𝑥 ) ) | 
						
							| 66 | 1 2 4 3 5 6 7 8 9 10 | iscgra | ⊢ ( 𝜑  →  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 ”〉  ↔  ∃ 𝑢  ∈  𝑃 ∃ 𝑣  ∈  𝑃 ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉  ∧  𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷  ∧  𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) ) ) | 
						
							| 67 | 11 66 | mpbid | ⊢ ( 𝜑  →  ∃ 𝑢  ∈  𝑃 ∃ 𝑣  ∈  𝑃 ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉  ∧  𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷  ∧  𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) ) | 
						
							| 68 | 67 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  →  ∃ 𝑢  ∈  𝑃 ∃ 𝑣  ∈  𝑃 ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑢 𝐸 𝑣 ”〉  ∧  𝑢 ( 𝐾 ‘ 𝐸 ) 𝐷  ∧  𝑣 ( 𝐾 ‘ 𝐸 ) 𝐹 ) ) | 
						
							| 69 | 65 68 | r19.29vva | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  →  ( 𝐶 ( dist ‘ 𝐺 ) 𝐴 )  =  ( 𝑦 ( dist ‘ 𝐺 ) 𝑥 ) ) | 
						
							| 70 | 1 16 17 18 19 20 21 22 23 24 27 29 69 | trgcgr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  →  〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑥 𝑈 𝑦 ”〉 ) | 
						
							| 71 | 70 47 50 | 3jca | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  →  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑥 𝑈 𝑦 ”〉  ∧  𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻  ∧  𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽 ) ) | 
						
							| 72 | 1 2 4 3 8 9 10 12 13 14 15 | cgrane3 | ⊢ ( 𝜑  →  𝑈  ≠  𝐻 ) | 
						
							| 73 | 72 | necomd | ⊢ ( 𝜑  →  𝐻  ≠  𝑈 ) | 
						
							| 74 | 1 2 4 3 5 6 7 8 9 10 11 | cgrane1 | ⊢ ( 𝜑  →  𝐴  ≠  𝐵 ) | 
						
							| 75 | 74 | necomd | ⊢ ( 𝜑  →  𝐵  ≠  𝐴 ) | 
						
							| 76 | 1 2 4 13 6 5 3 12 16 73 75 | hlcgrex | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  𝑃 ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ) | 
						
							| 77 | 1 2 4 3 8 9 10 12 13 14 15 | cgrane4 | ⊢ ( 𝜑  →  𝑈  ≠  𝐽 ) | 
						
							| 78 | 77 | necomd | ⊢ ( 𝜑  →  𝐽  ≠  𝑈 ) | 
						
							| 79 | 1 2 4 3 5 6 7 8 9 10 11 | cgrane2 | ⊢ ( 𝜑  →  𝐵  ≠  𝐶 ) | 
						
							| 80 | 1 2 4 13 6 7 3 14 16 78 79 | hlcgrex | ⊢ ( 𝜑  →  ∃ 𝑦  ∈  𝑃 ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) | 
						
							| 81 |  | reeanv | ⊢ ( ∃ 𝑥  ∈  𝑃 ∃ 𝑦  ∈  𝑃 ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ↔  ( ∃ 𝑥  ∈  𝑃 ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ∃ 𝑦  ∈  𝑃 ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) | 
						
							| 82 | 76 80 81 | sylanbrc | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  𝑃 ∃ 𝑦  ∈  𝑃 ( ( 𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽  ∧  ( 𝑈 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) | 
						
							| 83 | 71 82 | reximddv2 | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  𝑃 ∃ 𝑦  ∈  𝑃 ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑥 𝑈 𝑦 ”〉  ∧  𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻  ∧  𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽 ) ) | 
						
							| 84 | 1 2 4 3 5 6 7 12 13 14 | iscgra | ⊢ ( 𝜑  →  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐻 𝑈 𝐽 ”〉  ↔  ∃ 𝑥  ∈  𝑃 ∃ 𝑦  ∈  𝑃 ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑥 𝑈 𝑦 ”〉  ∧  𝑥 ( 𝐾 ‘ 𝑈 ) 𝐻  ∧  𝑦 ( 𝐾 ‘ 𝑈 ) 𝐽 ) ) ) | 
						
							| 85 | 83 84 | mpbird | ⊢ ( 𝜑  →  〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐻 𝑈 𝐽 ”〉 ) |