| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cgraid.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | cgraid.i |  |-  I = ( Itv ` G ) | 
						
							| 3 |  | cgraid.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 4 |  | cgraid.k |  |-  K = ( hlG ` G ) | 
						
							| 5 |  | cgraid.a |  |-  ( ph -> A e. P ) | 
						
							| 6 |  | cgraid.b |  |-  ( ph -> B e. P ) | 
						
							| 7 |  | cgraid.c |  |-  ( ph -> C e. P ) | 
						
							| 8 |  | cgracom.d |  |-  ( ph -> D e. P ) | 
						
							| 9 |  | cgracom.e |  |-  ( ph -> E e. P ) | 
						
							| 10 |  | cgracom.f |  |-  ( ph -> F e. P ) | 
						
							| 11 |  | cgracom.1 |  |-  ( ph -> <" A B C "> ( cgrA ` G ) <" D E F "> ) | 
						
							| 12 |  | cgratr.h |  |-  ( ph -> H e. P ) | 
						
							| 13 |  | cgratr.i |  |-  ( ph -> U e. P ) | 
						
							| 14 |  | cgratr.j |  |-  ( ph -> J e. P ) | 
						
							| 15 |  | cgratr.1 |  |-  ( ph -> <" D E F "> ( cgrA ` G ) <" H U J "> ) | 
						
							| 16 |  | eqid |  |-  ( dist ` G ) = ( dist ` G ) | 
						
							| 17 |  | eqid |  |-  ( cgrG ` G ) = ( cgrG ` G ) | 
						
							| 18 | 3 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> G e. TarskiG ) | 
						
							| 19 | 5 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> A e. P ) | 
						
							| 20 | 6 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> B e. P ) | 
						
							| 21 | 7 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> C e. P ) | 
						
							| 22 |  | simpllr |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> x e. P ) | 
						
							| 23 | 13 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> U e. P ) | 
						
							| 24 |  | simplr |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> y e. P ) | 
						
							| 25 |  | simprlr |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) | 
						
							| 26 | 25 | eqcomd |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> ( B ( dist ` G ) A ) = ( U ( dist ` G ) x ) ) | 
						
							| 27 | 1 16 2 18 20 19 23 22 26 | tgcgrcomlr |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> ( A ( dist ` G ) B ) = ( x ( dist ` G ) U ) ) | 
						
							| 28 |  | simprrr |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) | 
						
							| 29 | 28 | eqcomd |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> ( B ( dist ` G ) C ) = ( U ( dist ` G ) y ) ) | 
						
							| 30 | 18 | ad3antrrr |  |-  ( ( ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) /\ u e. P ) /\ v e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) -> G e. TarskiG ) | 
						
							| 31 | 19 | ad3antrrr |  |-  ( ( ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) /\ u e. P ) /\ v e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) -> A e. P ) | 
						
							| 32 | 20 | ad3antrrr |  |-  ( ( ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) /\ u e. P ) /\ v e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) -> B e. P ) | 
						
							| 33 | 21 | ad3antrrr |  |-  ( ( ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) /\ u e. P ) /\ v e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) -> C e. P ) | 
						
							| 34 |  | simpllr |  |-  ( ( ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) /\ u e. P ) /\ v e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) -> u e. P ) | 
						
							| 35 | 9 | ad6antr |  |-  ( ( ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) /\ u e. P ) /\ v e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) -> E e. P ) | 
						
							| 36 |  | simplr |  |-  ( ( ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) /\ u e. P ) /\ v e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) -> v e. P ) | 
						
							| 37 |  | simpr1 |  |-  ( ( ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) /\ u e. P ) /\ v e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) -> <" A B C "> ( cgrG ` G ) <" u E v "> ) | 
						
							| 38 | 1 16 2 17 30 31 32 33 34 35 36 37 | cgr3simp3 |  |-  ( ( ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) /\ u e. P ) /\ v e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) -> ( C ( dist ` G ) A ) = ( v ( dist ` G ) u ) ) | 
						
							| 39 | 22 | ad3antrrr |  |-  ( ( ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) /\ u e. P ) /\ v e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) -> x e. P ) | 
						
							| 40 | 24 | ad3antrrr |  |-  ( ( ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) /\ u e. P ) /\ v e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) -> y e. P ) | 
						
							| 41 | 8 | ad6antr |  |-  ( ( ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) /\ u e. P ) /\ v e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) -> D e. P ) | 
						
							| 42 | 10 | ad6antr |  |-  ( ( ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) /\ u e. P ) /\ v e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) -> F e. P ) | 
						
							| 43 | 23 | ad3antrrr |  |-  ( ( ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) /\ u e. P ) /\ v e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) -> U e. P ) | 
						
							| 44 | 14 | ad6antr |  |-  ( ( ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) /\ u e. P ) /\ v e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) -> J e. P ) | 
						
							| 45 | 12 | ad6antr |  |-  ( ( ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) /\ u e. P ) /\ v e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) -> H e. P ) | 
						
							| 46 | 15 | ad6antr |  |-  ( ( ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) /\ u e. P ) /\ v e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) -> <" D E F "> ( cgrA ` G ) <" H U J "> ) | 
						
							| 47 |  | simprll |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> x ( K ` U ) H ) | 
						
							| 48 | 47 | ad3antrrr |  |-  ( ( ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) /\ u e. P ) /\ v e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) -> x ( K ` U ) H ) | 
						
							| 49 | 1 2 4 30 41 35 42 45 43 44 46 39 48 | cgrahl1 |  |-  ( ( ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) /\ u e. P ) /\ v e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) -> <" D E F "> ( cgrA ` G ) <" x U J "> ) | 
						
							| 50 |  | simprrl |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> y ( K ` U ) J ) | 
						
							| 51 | 50 | ad3antrrr |  |-  ( ( ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) /\ u e. P ) /\ v e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) -> y ( K ` U ) J ) | 
						
							| 52 | 1 2 4 30 41 35 42 39 43 44 49 40 51 | cgrahl2 |  |-  ( ( ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) /\ u e. P ) /\ v e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) -> <" D E F "> ( cgrA ` G ) <" x U y "> ) | 
						
							| 53 |  | simpr2 |  |-  ( ( ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) /\ u e. P ) /\ v e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) -> u ( K ` E ) D ) | 
						
							| 54 |  | simpr3 |  |-  ( ( ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) /\ u e. P ) /\ v e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) -> v ( K ` E ) F ) | 
						
							| 55 | 1 16 2 17 30 31 32 33 34 35 36 37 | cgr3simp1 |  |-  ( ( ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) /\ u e. P ) /\ v e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) -> ( A ( dist ` G ) B ) = ( u ( dist ` G ) E ) ) | 
						
							| 56 | 55 | eqcomd |  |-  ( ( ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) /\ u e. P ) /\ v e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) -> ( u ( dist ` G ) E ) = ( A ( dist ` G ) B ) ) | 
						
							| 57 | 1 16 2 30 34 35 31 32 56 | tgcgrcomlr |  |-  ( ( ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) /\ u e. P ) /\ v e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) -> ( E ( dist ` G ) u ) = ( B ( dist ` G ) A ) ) | 
						
							| 58 | 26 | ad3antrrr |  |-  ( ( ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) /\ u e. P ) /\ v e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) -> ( B ( dist ` G ) A ) = ( U ( dist ` G ) x ) ) | 
						
							| 59 | 57 58 | eqtrd |  |-  ( ( ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) /\ u e. P ) /\ v e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) -> ( E ( dist ` G ) u ) = ( U ( dist ` G ) x ) ) | 
						
							| 60 | 1 16 2 17 30 31 32 33 34 35 36 37 | cgr3simp2 |  |-  ( ( ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) /\ u e. P ) /\ v e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) -> ( B ( dist ` G ) C ) = ( E ( dist ` G ) v ) ) | 
						
							| 61 | 29 | ad3antrrr |  |-  ( ( ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) /\ u e. P ) /\ v e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) -> ( B ( dist ` G ) C ) = ( U ( dist ` G ) y ) ) | 
						
							| 62 | 60 61 | eqtr3d |  |-  ( ( ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) /\ u e. P ) /\ v e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) -> ( E ( dist ` G ) v ) = ( U ( dist ` G ) y ) ) | 
						
							| 63 | 1 2 4 30 41 35 42 39 43 40 52 34 16 36 53 54 59 62 | cgracgr |  |-  ( ( ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) /\ u e. P ) /\ v e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) -> ( u ( dist ` G ) v ) = ( x ( dist ` G ) y ) ) | 
						
							| 64 | 1 16 2 30 34 36 39 40 63 | tgcgrcomlr |  |-  ( ( ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) /\ u e. P ) /\ v e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) -> ( v ( dist ` G ) u ) = ( y ( dist ` G ) x ) ) | 
						
							| 65 | 38 64 | eqtrd |  |-  ( ( ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) /\ u e. P ) /\ v e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) -> ( C ( dist ` G ) A ) = ( y ( dist ` G ) x ) ) | 
						
							| 66 | 1 2 4 3 5 6 7 8 9 10 | iscgra |  |-  ( ph -> ( <" A B C "> ( cgrA ` G ) <" D E F "> <-> E. u e. P E. v e. P ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) ) | 
						
							| 67 | 11 66 | mpbid |  |-  ( ph -> E. u e. P E. v e. P ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) | 
						
							| 68 | 67 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> E. u e. P E. v e. P ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) | 
						
							| 69 | 65 68 | r19.29vva |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> ( C ( dist ` G ) A ) = ( y ( dist ` G ) x ) ) | 
						
							| 70 | 1 16 17 18 19 20 21 22 23 24 27 29 69 | trgcgr |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> <" A B C "> ( cgrG ` G ) <" x U y "> ) | 
						
							| 71 | 70 47 50 | 3jca |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> ( <" A B C "> ( cgrG ` G ) <" x U y "> /\ x ( K ` U ) H /\ y ( K ` U ) J ) ) | 
						
							| 72 | 1 2 4 3 8 9 10 12 13 14 15 | cgrane3 |  |-  ( ph -> U =/= H ) | 
						
							| 73 | 72 | necomd |  |-  ( ph -> H =/= U ) | 
						
							| 74 | 1 2 4 3 5 6 7 8 9 10 11 | cgrane1 |  |-  ( ph -> A =/= B ) | 
						
							| 75 | 74 | necomd |  |-  ( ph -> B =/= A ) | 
						
							| 76 | 1 2 4 13 6 5 3 12 16 73 75 | hlcgrex |  |-  ( ph -> E. x e. P ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) ) | 
						
							| 77 | 1 2 4 3 8 9 10 12 13 14 15 | cgrane4 |  |-  ( ph -> U =/= J ) | 
						
							| 78 | 77 | necomd |  |-  ( ph -> J =/= U ) | 
						
							| 79 | 1 2 4 3 5 6 7 8 9 10 11 | cgrane2 |  |-  ( ph -> B =/= C ) | 
						
							| 80 | 1 2 4 13 6 7 3 14 16 78 79 | hlcgrex |  |-  ( ph -> E. y e. P ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) | 
						
							| 81 |  | reeanv |  |-  ( E. x e. P E. y e. P ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) <-> ( E. x e. P ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ E. y e. P ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) | 
						
							| 82 | 76 80 81 | sylanbrc |  |-  ( ph -> E. x e. P E. y e. P ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) | 
						
							| 83 | 71 82 | reximddv2 |  |-  ( ph -> E. x e. P E. y e. P ( <" A B C "> ( cgrG ` G ) <" x U y "> /\ x ( K ` U ) H /\ y ( K ` U ) J ) ) | 
						
							| 84 | 1 2 4 3 5 6 7 12 13 14 | iscgra |  |-  ( ph -> ( <" A B C "> ( cgrA ` G ) <" H U J "> <-> E. x e. P E. y e. P ( <" A B C "> ( cgrG ` G ) <" x U y "> /\ x ( K ` U ) H /\ y ( K ` U ) J ) ) ) | 
						
							| 85 | 83 84 | mpbird |  |-  ( ph -> <" A B C "> ( cgrA ` G ) <" H U J "> ) |