Step |
Hyp |
Ref |
Expression |
1 |
|
cgraid.p |
|- P = ( Base ` G ) |
2 |
|
cgraid.i |
|- I = ( Itv ` G ) |
3 |
|
cgraid.g |
|- ( ph -> G e. TarskiG ) |
4 |
|
cgraid.k |
|- K = ( hlG ` G ) |
5 |
|
cgraid.a |
|- ( ph -> A e. P ) |
6 |
|
cgraid.b |
|- ( ph -> B e. P ) |
7 |
|
cgraid.c |
|- ( ph -> C e. P ) |
8 |
|
cgracom.d |
|- ( ph -> D e. P ) |
9 |
|
cgracom.e |
|- ( ph -> E e. P ) |
10 |
|
cgracom.f |
|- ( ph -> F e. P ) |
11 |
|
cgracom.1 |
|- ( ph -> <" A B C "> ( cgrA ` G ) <" D E F "> ) |
12 |
|
cgratr.h |
|- ( ph -> H e. P ) |
13 |
|
cgratr.i |
|- ( ph -> U e. P ) |
14 |
|
cgratr.j |
|- ( ph -> J e. P ) |
15 |
|
cgratr.1 |
|- ( ph -> <" D E F "> ( cgrA ` G ) <" H U J "> ) |
16 |
|
eqid |
|- ( dist ` G ) = ( dist ` G ) |
17 |
|
eqid |
|- ( cgrG ` G ) = ( cgrG ` G ) |
18 |
3
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> G e. TarskiG ) |
19 |
5
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> A e. P ) |
20 |
6
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> B e. P ) |
21 |
7
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> C e. P ) |
22 |
|
simpllr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> x e. P ) |
23 |
13
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> U e. P ) |
24 |
|
simplr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> y e. P ) |
25 |
|
simprlr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) |
26 |
25
|
eqcomd |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> ( B ( dist ` G ) A ) = ( U ( dist ` G ) x ) ) |
27 |
1 16 2 18 20 19 23 22 26
|
tgcgrcomlr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> ( A ( dist ` G ) B ) = ( x ( dist ` G ) U ) ) |
28 |
|
simprrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) |
29 |
28
|
eqcomd |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> ( B ( dist ` G ) C ) = ( U ( dist ` G ) y ) ) |
30 |
18
|
ad3antrrr |
|- ( ( ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) /\ u e. P ) /\ v e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) -> G e. TarskiG ) |
31 |
19
|
ad3antrrr |
|- ( ( ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) /\ u e. P ) /\ v e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) -> A e. P ) |
32 |
20
|
ad3antrrr |
|- ( ( ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) /\ u e. P ) /\ v e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) -> B e. P ) |
33 |
21
|
ad3antrrr |
|- ( ( ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) /\ u e. P ) /\ v e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) -> C e. P ) |
34 |
|
simpllr |
|- ( ( ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) /\ u e. P ) /\ v e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) -> u e. P ) |
35 |
9
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) /\ u e. P ) /\ v e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) -> E e. P ) |
36 |
|
simplr |
|- ( ( ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) /\ u e. P ) /\ v e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) -> v e. P ) |
37 |
|
simpr1 |
|- ( ( ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) /\ u e. P ) /\ v e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) -> <" A B C "> ( cgrG ` G ) <" u E v "> ) |
38 |
1 16 2 17 30 31 32 33 34 35 36 37
|
cgr3simp3 |
|- ( ( ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) /\ u e. P ) /\ v e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) -> ( C ( dist ` G ) A ) = ( v ( dist ` G ) u ) ) |
39 |
22
|
ad3antrrr |
|- ( ( ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) /\ u e. P ) /\ v e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) -> x e. P ) |
40 |
24
|
ad3antrrr |
|- ( ( ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) /\ u e. P ) /\ v e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) -> y e. P ) |
41 |
8
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) /\ u e. P ) /\ v e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) -> D e. P ) |
42 |
10
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) /\ u e. P ) /\ v e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) -> F e. P ) |
43 |
23
|
ad3antrrr |
|- ( ( ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) /\ u e. P ) /\ v e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) -> U e. P ) |
44 |
14
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) /\ u e. P ) /\ v e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) -> J e. P ) |
45 |
12
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) /\ u e. P ) /\ v e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) -> H e. P ) |
46 |
15
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) /\ u e. P ) /\ v e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) -> <" D E F "> ( cgrA ` G ) <" H U J "> ) |
47 |
|
simprll |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> x ( K ` U ) H ) |
48 |
47
|
ad3antrrr |
|- ( ( ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) /\ u e. P ) /\ v e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) -> x ( K ` U ) H ) |
49 |
1 2 4 30 41 35 42 45 43 44 46 39 48
|
cgrahl1 |
|- ( ( ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) /\ u e. P ) /\ v e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) -> <" D E F "> ( cgrA ` G ) <" x U J "> ) |
50 |
|
simprrl |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> y ( K ` U ) J ) |
51 |
50
|
ad3antrrr |
|- ( ( ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) /\ u e. P ) /\ v e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) -> y ( K ` U ) J ) |
52 |
1 2 4 30 41 35 42 39 43 44 49 40 51
|
cgrahl2 |
|- ( ( ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) /\ u e. P ) /\ v e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) -> <" D E F "> ( cgrA ` G ) <" x U y "> ) |
53 |
|
simpr2 |
|- ( ( ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) /\ u e. P ) /\ v e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) -> u ( K ` E ) D ) |
54 |
|
simpr3 |
|- ( ( ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) /\ u e. P ) /\ v e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) -> v ( K ` E ) F ) |
55 |
1 16 2 17 30 31 32 33 34 35 36 37
|
cgr3simp1 |
|- ( ( ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) /\ u e. P ) /\ v e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) -> ( A ( dist ` G ) B ) = ( u ( dist ` G ) E ) ) |
56 |
55
|
eqcomd |
|- ( ( ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) /\ u e. P ) /\ v e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) -> ( u ( dist ` G ) E ) = ( A ( dist ` G ) B ) ) |
57 |
1 16 2 30 34 35 31 32 56
|
tgcgrcomlr |
|- ( ( ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) /\ u e. P ) /\ v e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) -> ( E ( dist ` G ) u ) = ( B ( dist ` G ) A ) ) |
58 |
26
|
ad3antrrr |
|- ( ( ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) /\ u e. P ) /\ v e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) -> ( B ( dist ` G ) A ) = ( U ( dist ` G ) x ) ) |
59 |
57 58
|
eqtrd |
|- ( ( ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) /\ u e. P ) /\ v e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) -> ( E ( dist ` G ) u ) = ( U ( dist ` G ) x ) ) |
60 |
1 16 2 17 30 31 32 33 34 35 36 37
|
cgr3simp2 |
|- ( ( ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) /\ u e. P ) /\ v e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) -> ( B ( dist ` G ) C ) = ( E ( dist ` G ) v ) ) |
61 |
29
|
ad3antrrr |
|- ( ( ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) /\ u e. P ) /\ v e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) -> ( B ( dist ` G ) C ) = ( U ( dist ` G ) y ) ) |
62 |
60 61
|
eqtr3d |
|- ( ( ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) /\ u e. P ) /\ v e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) -> ( E ( dist ` G ) v ) = ( U ( dist ` G ) y ) ) |
63 |
1 2 4 30 41 35 42 39 43 40 52 34 16 36 53 54 59 62
|
cgracgr |
|- ( ( ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) /\ u e. P ) /\ v e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) -> ( u ( dist ` G ) v ) = ( x ( dist ` G ) y ) ) |
64 |
1 16 2 30 34 36 39 40 63
|
tgcgrcomlr |
|- ( ( ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) /\ u e. P ) /\ v e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) -> ( v ( dist ` G ) u ) = ( y ( dist ` G ) x ) ) |
65 |
38 64
|
eqtrd |
|- ( ( ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) /\ u e. P ) /\ v e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) -> ( C ( dist ` G ) A ) = ( y ( dist ` G ) x ) ) |
66 |
1 2 4 3 5 6 7 8 9 10
|
iscgra |
|- ( ph -> ( <" A B C "> ( cgrA ` G ) <" D E F "> <-> E. u e. P E. v e. P ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) ) |
67 |
11 66
|
mpbid |
|- ( ph -> E. u e. P E. v e. P ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) |
68 |
67
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> E. u e. P E. v e. P ( <" A B C "> ( cgrG ` G ) <" u E v "> /\ u ( K ` E ) D /\ v ( K ` E ) F ) ) |
69 |
65 68
|
r19.29vva |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> ( C ( dist ` G ) A ) = ( y ( dist ` G ) x ) ) |
70 |
1 16 17 18 19 20 21 22 23 24 27 29 69
|
trgcgr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> <" A B C "> ( cgrG ` G ) <" x U y "> ) |
71 |
70 47 50
|
3jca |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> ( <" A B C "> ( cgrG ` G ) <" x U y "> /\ x ( K ` U ) H /\ y ( K ` U ) J ) ) |
72 |
1 2 4 3 8 9 10 12 13 14 15
|
cgrane3 |
|- ( ph -> U =/= H ) |
73 |
72
|
necomd |
|- ( ph -> H =/= U ) |
74 |
1 2 4 3 5 6 7 8 9 10 11
|
cgrane1 |
|- ( ph -> A =/= B ) |
75 |
74
|
necomd |
|- ( ph -> B =/= A ) |
76 |
1 2 4 13 6 5 3 12 16 73 75
|
hlcgrex |
|- ( ph -> E. x e. P ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) ) |
77 |
1 2 4 3 8 9 10 12 13 14 15
|
cgrane4 |
|- ( ph -> U =/= J ) |
78 |
77
|
necomd |
|- ( ph -> J =/= U ) |
79 |
1 2 4 3 5 6 7 8 9 10 11
|
cgrane2 |
|- ( ph -> B =/= C ) |
80 |
1 2 4 13 6 7 3 14 16 78 79
|
hlcgrex |
|- ( ph -> E. y e. P ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) |
81 |
|
reeanv |
|- ( E. x e. P E. y e. P ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) <-> ( E. x e. P ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ E. y e. P ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) |
82 |
76 80 81
|
sylanbrc |
|- ( ph -> E. x e. P E. y e. P ( ( x ( K ` U ) H /\ ( U ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` U ) J /\ ( U ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) |
83 |
71 82
|
reximddv2 |
|- ( ph -> E. x e. P E. y e. P ( <" A B C "> ( cgrG ` G ) <" x U y "> /\ x ( K ` U ) H /\ y ( K ` U ) J ) ) |
84 |
1 2 4 3 5 6 7 12 13 14
|
iscgra |
|- ( ph -> ( <" A B C "> ( cgrA ` G ) <" H U J "> <-> E. x e. P E. y e. P ( <" A B C "> ( cgrG ` G ) <" x U y "> /\ x ( K ` U ) H /\ y ( K ` U ) J ) ) ) |
85 |
83 84
|
mpbird |
|- ( ph -> <" A B C "> ( cgrA ` G ) <" H U J "> ) |