Metamath Proof Explorer


Theorem cgrahl1

Description: Angle congruence is independent of the choice of points on the rays. Proposition 11.10 of Schwabhauser p. 95. (Contributed by Thierry Arnoux, 1-Aug-2020)

Ref Expression
Hypotheses iscgra.p 𝑃 = ( Base ‘ 𝐺 )
iscgra.i 𝐼 = ( Itv ‘ 𝐺 )
iscgra.k 𝐾 = ( hlG ‘ 𝐺 )
iscgra.g ( 𝜑𝐺 ∈ TarskiG )
iscgra.a ( 𝜑𝐴𝑃 )
iscgra.b ( 𝜑𝐵𝑃 )
iscgra.c ( 𝜑𝐶𝑃 )
iscgra.d ( 𝜑𝐷𝑃 )
iscgra.e ( 𝜑𝐸𝑃 )
iscgra.f ( 𝜑𝐹𝑃 )
cgrahl1.2 ( 𝜑 → ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrA ‘ 𝐺 ) ⟨“ 𝐷 𝐸 𝐹 ”⟩ )
cgrahl1.x ( 𝜑𝑋𝑃 )
cgrahl1.1 ( 𝜑𝑋 ( 𝐾𝐸 ) 𝐷 )
Assertion cgrahl1 ( 𝜑 → ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrA ‘ 𝐺 ) ⟨“ 𝑋 𝐸 𝐹 ”⟩ )

Proof

Step Hyp Ref Expression
1 iscgra.p 𝑃 = ( Base ‘ 𝐺 )
2 iscgra.i 𝐼 = ( Itv ‘ 𝐺 )
3 iscgra.k 𝐾 = ( hlG ‘ 𝐺 )
4 iscgra.g ( 𝜑𝐺 ∈ TarskiG )
5 iscgra.a ( 𝜑𝐴𝑃 )
6 iscgra.b ( 𝜑𝐵𝑃 )
7 iscgra.c ( 𝜑𝐶𝑃 )
8 iscgra.d ( 𝜑𝐷𝑃 )
9 iscgra.e ( 𝜑𝐸𝑃 )
10 iscgra.f ( 𝜑𝐹𝑃 )
11 cgrahl1.2 ( 𝜑 → ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrA ‘ 𝐺 ) ⟨“ 𝐷 𝐸 𝐹 ”⟩ )
12 cgrahl1.x ( 𝜑𝑋𝑃 )
13 cgrahl1.1 ( 𝜑𝑋 ( 𝐾𝐸 ) 𝐷 )
14 4 ad3antrrr ( ( ( ( 𝜑𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑥 𝐸 𝑦 ”⟩ ∧ 𝑥 ( 𝐾𝐸 ) 𝐷𝑦 ( 𝐾𝐸 ) 𝐹 ) ) → 𝐺 ∈ TarskiG )
15 5 ad3antrrr ( ( ( ( 𝜑𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑥 𝐸 𝑦 ”⟩ ∧ 𝑥 ( 𝐾𝐸 ) 𝐷𝑦 ( 𝐾𝐸 ) 𝐹 ) ) → 𝐴𝑃 )
16 6 ad3antrrr ( ( ( ( 𝜑𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑥 𝐸 𝑦 ”⟩ ∧ 𝑥 ( 𝐾𝐸 ) 𝐷𝑦 ( 𝐾𝐸 ) 𝐹 ) ) → 𝐵𝑃 )
17 7 ad3antrrr ( ( ( ( 𝜑𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑥 𝐸 𝑦 ”⟩ ∧ 𝑥 ( 𝐾𝐸 ) 𝐷𝑦 ( 𝐾𝐸 ) 𝐹 ) ) → 𝐶𝑃 )
18 12 ad3antrrr ( ( ( ( 𝜑𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑥 𝐸 𝑦 ”⟩ ∧ 𝑥 ( 𝐾𝐸 ) 𝐷𝑦 ( 𝐾𝐸 ) 𝐹 ) ) → 𝑋𝑃 )
19 9 ad3antrrr ( ( ( ( 𝜑𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑥 𝐸 𝑦 ”⟩ ∧ 𝑥 ( 𝐾𝐸 ) 𝐷𝑦 ( 𝐾𝐸 ) 𝐹 ) ) → 𝐸𝑃 )
20 10 ad3antrrr ( ( ( ( 𝜑𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑥 𝐸 𝑦 ”⟩ ∧ 𝑥 ( 𝐾𝐸 ) 𝐷𝑦 ( 𝐾𝐸 ) 𝐹 ) ) → 𝐹𝑃 )
21 simpllr ( ( ( ( 𝜑𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑥 𝐸 𝑦 ”⟩ ∧ 𝑥 ( 𝐾𝐸 ) 𝐷𝑦 ( 𝐾𝐸 ) 𝐹 ) ) → 𝑥𝑃 )
22 simplr ( ( ( ( 𝜑𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑥 𝐸 𝑦 ”⟩ ∧ 𝑥 ( 𝐾𝐸 ) 𝐷𝑦 ( 𝐾𝐸 ) 𝐹 ) ) → 𝑦𝑃 )
23 simpr1 ( ( ( ( 𝜑𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑥 𝐸 𝑦 ”⟩ ∧ 𝑥 ( 𝐾𝐸 ) 𝐷𝑦 ( 𝐾𝐸 ) 𝐹 ) ) → ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑥 𝐸 𝑦 ”⟩ )
24 8 ad3antrrr ( ( ( ( 𝜑𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑥 𝐸 𝑦 ”⟩ ∧ 𝑥 ( 𝐾𝐸 ) 𝐷𝑦 ( 𝐾𝐸 ) 𝐹 ) ) → 𝐷𝑃 )
25 simpr2 ( ( ( ( 𝜑𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑥 𝐸 𝑦 ”⟩ ∧ 𝑥 ( 𝐾𝐸 ) 𝐷𝑦 ( 𝐾𝐸 ) 𝐹 ) ) → 𝑥 ( 𝐾𝐸 ) 𝐷 )
26 13 ad3antrrr ( ( ( ( 𝜑𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑥 𝐸 𝑦 ”⟩ ∧ 𝑥 ( 𝐾𝐸 ) 𝐷𝑦 ( 𝐾𝐸 ) 𝐹 ) ) → 𝑋 ( 𝐾𝐸 ) 𝐷 )
27 1 2 3 18 24 19 14 26 hlcomd ( ( ( ( 𝜑𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑥 𝐸 𝑦 ”⟩ ∧ 𝑥 ( 𝐾𝐸 ) 𝐷𝑦 ( 𝐾𝐸 ) 𝐹 ) ) → 𝐷 ( 𝐾𝐸 ) 𝑋 )
28 1 2 3 21 24 18 14 19 25 27 hltr ( ( ( ( 𝜑𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑥 𝐸 𝑦 ”⟩ ∧ 𝑥 ( 𝐾𝐸 ) 𝐷𝑦 ( 𝐾𝐸 ) 𝐹 ) ) → 𝑥 ( 𝐾𝐸 ) 𝑋 )
29 simpr3 ( ( ( ( 𝜑𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑥 𝐸 𝑦 ”⟩ ∧ 𝑥 ( 𝐾𝐸 ) 𝐷𝑦 ( 𝐾𝐸 ) 𝐹 ) ) → 𝑦 ( 𝐾𝐸 ) 𝐹 )
30 1 2 3 14 15 16 17 18 19 20 21 22 23 28 29 iscgrad ( ( ( ( 𝜑𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑥 𝐸 𝑦 ”⟩ ∧ 𝑥 ( 𝐾𝐸 ) 𝐷𝑦 ( 𝐾𝐸 ) 𝐹 ) ) → ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrA ‘ 𝐺 ) ⟨“ 𝑋 𝐸 𝐹 ”⟩ )
31 1 2 3 4 5 6 7 8 9 10 iscgra ( 𝜑 → ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrA ‘ 𝐺 ) ⟨“ 𝐷 𝐸 𝐹 ”⟩ ↔ ∃ 𝑥𝑃𝑦𝑃 ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑥 𝐸 𝑦 ”⟩ ∧ 𝑥 ( 𝐾𝐸 ) 𝐷𝑦 ( 𝐾𝐸 ) 𝐹 ) ) )
32 11 31 mpbid ( 𝜑 → ∃ 𝑥𝑃𝑦𝑃 ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑥 𝐸 𝑦 ”⟩ ∧ 𝑥 ( 𝐾𝐸 ) 𝐷𝑦 ( 𝐾𝐸 ) 𝐹 ) )
33 30 32 r19.29vva ( 𝜑 → ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrA ‘ 𝐺 ) ⟨“ 𝑋 𝐸 𝐹 ”⟩ )