| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cgraid.p |
|- P = ( Base ` G ) |
| 2 |
|
cgraid.i |
|- I = ( Itv ` G ) |
| 3 |
|
cgraid.g |
|- ( ph -> G e. TarskiG ) |
| 4 |
|
cgraid.k |
|- K = ( hlG ` G ) |
| 5 |
|
cgraid.a |
|- ( ph -> A e. P ) |
| 6 |
|
cgraid.b |
|- ( ph -> B e. P ) |
| 7 |
|
cgraid.c |
|- ( ph -> C e. P ) |
| 8 |
|
cgracom.d |
|- ( ph -> D e. P ) |
| 9 |
|
cgracom.e |
|- ( ph -> E e. P ) |
| 10 |
|
cgracom.f |
|- ( ph -> F e. P ) |
| 11 |
|
cgracom.1 |
|- ( ph -> <" A B C "> ( cgrA ` G ) <" D E F "> ) |
| 12 |
|
eqid |
|- ( dist ` G ) = ( dist ` G ) |
| 13 |
|
eqid |
|- ( cgrG ` G ) = ( cgrG ` G ) |
| 14 |
3
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) A /\ ( B ( dist ` G ) x ) = ( E ( dist ` G ) D ) ) /\ ( y ( K ` B ) C /\ ( B ( dist ` G ) y ) = ( E ( dist ` G ) F ) ) ) ) -> G e. TarskiG ) |
| 15 |
8
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) A /\ ( B ( dist ` G ) x ) = ( E ( dist ` G ) D ) ) /\ ( y ( K ` B ) C /\ ( B ( dist ` G ) y ) = ( E ( dist ` G ) F ) ) ) ) -> D e. P ) |
| 16 |
9
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) A /\ ( B ( dist ` G ) x ) = ( E ( dist ` G ) D ) ) /\ ( y ( K ` B ) C /\ ( B ( dist ` G ) y ) = ( E ( dist ` G ) F ) ) ) ) -> E e. P ) |
| 17 |
10
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) A /\ ( B ( dist ` G ) x ) = ( E ( dist ` G ) D ) ) /\ ( y ( K ` B ) C /\ ( B ( dist ` G ) y ) = ( E ( dist ` G ) F ) ) ) ) -> F e. P ) |
| 18 |
|
simpllr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) A /\ ( B ( dist ` G ) x ) = ( E ( dist ` G ) D ) ) /\ ( y ( K ` B ) C /\ ( B ( dist ` G ) y ) = ( E ( dist ` G ) F ) ) ) ) -> x e. P ) |
| 19 |
6
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) A /\ ( B ( dist ` G ) x ) = ( E ( dist ` G ) D ) ) /\ ( y ( K ` B ) C /\ ( B ( dist ` G ) y ) = ( E ( dist ` G ) F ) ) ) ) -> B e. P ) |
| 20 |
|
simplr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) A /\ ( B ( dist ` G ) x ) = ( E ( dist ` G ) D ) ) /\ ( y ( K ` B ) C /\ ( B ( dist ` G ) y ) = ( E ( dist ` G ) F ) ) ) ) -> y e. P ) |
| 21 |
|
simprlr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) A /\ ( B ( dist ` G ) x ) = ( E ( dist ` G ) D ) ) /\ ( y ( K ` B ) C /\ ( B ( dist ` G ) y ) = ( E ( dist ` G ) F ) ) ) ) -> ( B ( dist ` G ) x ) = ( E ( dist ` G ) D ) ) |
| 22 |
21
|
eqcomd |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) A /\ ( B ( dist ` G ) x ) = ( E ( dist ` G ) D ) ) /\ ( y ( K ` B ) C /\ ( B ( dist ` G ) y ) = ( E ( dist ` G ) F ) ) ) ) -> ( E ( dist ` G ) D ) = ( B ( dist ` G ) x ) ) |
| 23 |
1 12 2 14 16 15 19 18 22
|
tgcgrcomlr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) A /\ ( B ( dist ` G ) x ) = ( E ( dist ` G ) D ) ) /\ ( y ( K ` B ) C /\ ( B ( dist ` G ) y ) = ( E ( dist ` G ) F ) ) ) ) -> ( D ( dist ` G ) E ) = ( x ( dist ` G ) B ) ) |
| 24 |
|
simprrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) A /\ ( B ( dist ` G ) x ) = ( E ( dist ` G ) D ) ) /\ ( y ( K ` B ) C /\ ( B ( dist ` G ) y ) = ( E ( dist ` G ) F ) ) ) ) -> ( B ( dist ` G ) y ) = ( E ( dist ` G ) F ) ) |
| 25 |
24
|
eqcomd |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) A /\ ( B ( dist ` G ) x ) = ( E ( dist ` G ) D ) ) /\ ( y ( K ` B ) C /\ ( B ( dist ` G ) y ) = ( E ( dist ` G ) F ) ) ) ) -> ( E ( dist ` G ) F ) = ( B ( dist ` G ) y ) ) |
| 26 |
5
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) A /\ ( B ( dist ` G ) x ) = ( E ( dist ` G ) D ) ) /\ ( y ( K ` B ) C /\ ( B ( dist ` G ) y ) = ( E ( dist ` G ) F ) ) ) ) -> A e. P ) |
| 27 |
7
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) A /\ ( B ( dist ` G ) x ) = ( E ( dist ` G ) D ) ) /\ ( y ( K ` B ) C /\ ( B ( dist ` G ) y ) = ( E ( dist ` G ) F ) ) ) ) -> C e. P ) |
| 28 |
11
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) A /\ ( B ( dist ` G ) x ) = ( E ( dist ` G ) D ) ) /\ ( y ( K ` B ) C /\ ( B ( dist ` G ) y ) = ( E ( dist ` G ) F ) ) ) ) -> <" A B C "> ( cgrA ` G ) <" D E F "> ) |
| 29 |
|
simprll |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) A /\ ( B ( dist ` G ) x ) = ( E ( dist ` G ) D ) ) /\ ( y ( K ` B ) C /\ ( B ( dist ` G ) y ) = ( E ( dist ` G ) F ) ) ) ) -> x ( K ` B ) A ) |
| 30 |
|
simprrl |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) A /\ ( B ( dist ` G ) x ) = ( E ( dist ` G ) D ) ) /\ ( y ( K ` B ) C /\ ( B ( dist ` G ) y ) = ( E ( dist ` G ) F ) ) ) ) -> y ( K ` B ) C ) |
| 31 |
1 2 4 14 26 19 27 15 16 17 28 18 12 20 29 30 21 24
|
cgracgr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) A /\ ( B ( dist ` G ) x ) = ( E ( dist ` G ) D ) ) /\ ( y ( K ` B ) C /\ ( B ( dist ` G ) y ) = ( E ( dist ` G ) F ) ) ) ) -> ( x ( dist ` G ) y ) = ( D ( dist ` G ) F ) ) |
| 32 |
31
|
eqcomd |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) A /\ ( B ( dist ` G ) x ) = ( E ( dist ` G ) D ) ) /\ ( y ( K ` B ) C /\ ( B ( dist ` G ) y ) = ( E ( dist ` G ) F ) ) ) ) -> ( D ( dist ` G ) F ) = ( x ( dist ` G ) y ) ) |
| 33 |
1 12 2 14 15 17 18 20 32
|
tgcgrcomlr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) A /\ ( B ( dist ` G ) x ) = ( E ( dist ` G ) D ) ) /\ ( y ( K ` B ) C /\ ( B ( dist ` G ) y ) = ( E ( dist ` G ) F ) ) ) ) -> ( F ( dist ` G ) D ) = ( y ( dist ` G ) x ) ) |
| 34 |
1 12 13 14 15 16 17 18 19 20 23 25 33
|
trgcgr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) A /\ ( B ( dist ` G ) x ) = ( E ( dist ` G ) D ) ) /\ ( y ( K ` B ) C /\ ( B ( dist ` G ) y ) = ( E ( dist ` G ) F ) ) ) ) -> <" D E F "> ( cgrG ` G ) <" x B y "> ) |
| 35 |
34 29 30
|
3jca |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) A /\ ( B ( dist ` G ) x ) = ( E ( dist ` G ) D ) ) /\ ( y ( K ` B ) C /\ ( B ( dist ` G ) y ) = ( E ( dist ` G ) F ) ) ) ) -> ( <" D E F "> ( cgrG ` G ) <" x B y "> /\ x ( K ` B ) A /\ y ( K ` B ) C ) ) |
| 36 |
1 2 4 3 5 6 7 8 9 10 11
|
cgrane1 |
|- ( ph -> A =/= B ) |
| 37 |
1 2 4 3 5 6 7 8 9 10 11
|
cgrane3 |
|- ( ph -> E =/= D ) |
| 38 |
1 2 4 6 9 8 3 5 12 36 37
|
hlcgrex |
|- ( ph -> E. x e. P ( x ( K ` B ) A /\ ( B ( dist ` G ) x ) = ( E ( dist ` G ) D ) ) ) |
| 39 |
1 2 4 3 5 6 7 8 9 10 11
|
cgrane2 |
|- ( ph -> B =/= C ) |
| 40 |
39
|
necomd |
|- ( ph -> C =/= B ) |
| 41 |
1 2 4 3 5 6 7 8 9 10 11
|
cgrane4 |
|- ( ph -> E =/= F ) |
| 42 |
1 2 4 6 9 10 3 7 12 40 41
|
hlcgrex |
|- ( ph -> E. y e. P ( y ( K ` B ) C /\ ( B ( dist ` G ) y ) = ( E ( dist ` G ) F ) ) ) |
| 43 |
|
reeanv |
|- ( E. x e. P E. y e. P ( ( x ( K ` B ) A /\ ( B ( dist ` G ) x ) = ( E ( dist ` G ) D ) ) /\ ( y ( K ` B ) C /\ ( B ( dist ` G ) y ) = ( E ( dist ` G ) F ) ) ) <-> ( E. x e. P ( x ( K ` B ) A /\ ( B ( dist ` G ) x ) = ( E ( dist ` G ) D ) ) /\ E. y e. P ( y ( K ` B ) C /\ ( B ( dist ` G ) y ) = ( E ( dist ` G ) F ) ) ) ) |
| 44 |
38 42 43
|
sylanbrc |
|- ( ph -> E. x e. P E. y e. P ( ( x ( K ` B ) A /\ ( B ( dist ` G ) x ) = ( E ( dist ` G ) D ) ) /\ ( y ( K ` B ) C /\ ( B ( dist ` G ) y ) = ( E ( dist ` G ) F ) ) ) ) |
| 45 |
35 44
|
reximddv2 |
|- ( ph -> E. x e. P E. y e. P ( <" D E F "> ( cgrG ` G ) <" x B y "> /\ x ( K ` B ) A /\ y ( K ` B ) C ) ) |
| 46 |
1 2 4 3 8 9 10 5 6 7
|
iscgra |
|- ( ph -> ( <" D E F "> ( cgrA ` G ) <" A B C "> <-> E. x e. P E. y e. P ( <" D E F "> ( cgrG ` G ) <" x B y "> /\ x ( K ` B ) A /\ y ( K ` B ) C ) ) ) |
| 47 |
45 46
|
mpbird |
|- ( ph -> <" D E F "> ( cgrA ` G ) <" A B C "> ) |