Metamath Proof Explorer


Definition df-cgra

Description: Define the congruence relation between angles. As for triangles we use "words of points". See iscgra for a more human readable version. (Contributed by Thierry Arnoux, 30-Jul-2020)

Ref Expression
Assertion df-cgra 𝒢=gVab|[˙Baseg/p]˙[˙hl𝒢g/k]˙ap0..^3bp0..^3xpypa𝒢g⟨“xb1y”⟩xkb1b0ykb1b2

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccgra class𝒢
1 vg setvarg
2 cvv classV
3 va setvara
4 vb setvarb
5 cbs classBase
6 1 cv setvarg
7 6 5 cfv classBaseg
8 vp setvarp
9 chlg classhl𝒢
10 6 9 cfv classhl𝒢g
11 vk setvark
12 3 cv setvara
13 8 cv setvarp
14 cmap class𝑚
15 cc0 class0
16 cfzo class..^
17 c3 class3
18 15 17 16 co class0..^3
19 13 18 14 co classp0..^3
20 12 19 wcel wffap0..^3
21 4 cv setvarb
22 21 19 wcel wffbp0..^3
23 20 22 wa wffap0..^3bp0..^3
24 vx setvarx
25 vy setvary
26 ccgrg class𝒢
27 6 26 cfv class𝒢g
28 24 cv setvarx
29 c1 class1
30 29 21 cfv classb1
31 25 cv setvary
32 28 30 31 cs3 class⟨“xb1y”⟩
33 12 32 27 wbr wffa𝒢g⟨“xb1y”⟩
34 11 cv setvark
35 30 34 cfv classkb1
36 15 21 cfv classb0
37 28 36 35 wbr wffxkb1b0
38 c2 class2
39 38 21 cfv classb2
40 31 39 35 wbr wffykb1b2
41 33 37 40 w3a wffa𝒢g⟨“xb1y”⟩xkb1b0ykb1b2
42 41 25 13 wrex wffypa𝒢g⟨“xb1y”⟩xkb1b0ykb1b2
43 42 24 13 wrex wffxpypa𝒢g⟨“xb1y”⟩xkb1b0ykb1b2
44 23 43 wa wffap0..^3bp0..^3xpypa𝒢g⟨“xb1y”⟩xkb1b0ykb1b2
45 44 11 10 wsbc wff[˙hl𝒢g/k]˙ap0..^3bp0..^3xpypa𝒢g⟨“xb1y”⟩xkb1b0ykb1b2
46 45 8 7 wsbc wff[˙Baseg/p]˙[˙hl𝒢g/k]˙ap0..^3bp0..^3xpypa𝒢g⟨“xb1y”⟩xkb1b0ykb1b2
47 46 3 4 copab classab|[˙Baseg/p]˙[˙hl𝒢g/k]˙ap0..^3bp0..^3xpypa𝒢g⟨“xb1y”⟩xkb1b0ykb1b2
48 1 2 47 cmpt classgVab|[˙Baseg/p]˙[˙hl𝒢g/k]˙ap0..^3bp0..^3xpypa𝒢g⟨“xb1y”⟩xkb1b0ykb1b2
49 0 48 wceq wff𝒢=gVab|[˙Baseg/p]˙[˙hl𝒢g/k]˙ap0..^3bp0..^3xpypa𝒢g⟨“xb1y”⟩xkb1b0ykb1b2