Metamath Proof Explorer


Theorem cgracgr

Description: First direction of proposition 11.4 of Schwabhauser p. 95. Again, this is "half" of the proposition, i.e. only two additional points are used, while Schwabhauser has four. (Contributed by Thierry Arnoux, 31-Jul-2020)

Ref Expression
Hypotheses iscgra.p P=BaseG
iscgra.i I=ItvG
iscgra.k K=hl𝒢G
iscgra.g φG𝒢Tarski
iscgra.a φAP
iscgra.b φBP
iscgra.c φCP
iscgra.d φDP
iscgra.e φEP
iscgra.f φFP
cgrahl1.2 φ⟨“ABC”⟩𝒢G⟨“DEF”⟩
cgrahl1.x φXP
cgracgr.m -˙=distG
cgracgr.y φYP
cgracgr.1 φXKBA
cgracgr.2 φYKBC
cgracgr.3 φB-˙X=E-˙D
cgracgr.4 φB-˙Y=E-˙F
Assertion cgracgr φX-˙Y=D-˙F

Proof

Step Hyp Ref Expression
1 iscgra.p P=BaseG
2 iscgra.i I=ItvG
3 iscgra.k K=hl𝒢G
4 iscgra.g φG𝒢Tarski
5 iscgra.a φAP
6 iscgra.b φBP
7 iscgra.c φCP
8 iscgra.d φDP
9 iscgra.e φEP
10 iscgra.f φFP
11 cgrahl1.2 φ⟨“ABC”⟩𝒢G⟨“DEF”⟩
12 cgrahl1.x φXP
13 cgracgr.m -˙=distG
14 cgracgr.y φYP
15 cgracgr.1 φXKBA
16 cgracgr.2 φYKBC
17 cgracgr.3 φB-˙X=E-˙D
18 cgracgr.4 φB-˙Y=E-˙F
19 eqid Line𝒢G=Line𝒢G
20 4 ad3antrrr φxPyP⟨“ABC”⟩𝒢G⟨“xEy”⟩xKEDyKEFG𝒢Tarski
21 5 ad3antrrr φxPyP⟨“ABC”⟩𝒢G⟨“xEy”⟩xKEDyKEFAP
22 6 ad3antrrr φxPyP⟨“ABC”⟩𝒢G⟨“xEy”⟩xKEDyKEFBP
23 12 ad3antrrr φxPyP⟨“ABC”⟩𝒢G⟨“xEy”⟩xKEDyKEFXP
24 eqid 𝒢G=𝒢G
25 simpllr φxPyP⟨“ABC”⟩𝒢G⟨“xEy”⟩xKEDyKEFxP
26 9 ad3antrrr φxPyP⟨“ABC”⟩𝒢G⟨“xEy”⟩xKEDyKEFEP
27 14 ad3antrrr φxPyP⟨“ABC”⟩𝒢G⟨“xEy”⟩xKEDyKEFYP
28 8 ad3antrrr φxPyP⟨“ABC”⟩𝒢G⟨“xEy”⟩xKEDyKEFDP
29 10 ad3antrrr φxPyP⟨“ABC”⟩𝒢G⟨“xEy”⟩xKEDyKEFFP
30 1 2 3 12 5 6 4 15 hlne2 φAB
31 30 necomd φBA
32 1 2 3 12 5 6 4 19 15 hlln φXALine𝒢GB
33 1 2 19 4 6 5 12 31 32 lncom φXBLine𝒢GA
34 33 orcd φXBLine𝒢GAB=A
35 1 19 2 4 6 5 12 34 colrot1 φBALine𝒢GXA=X
36 35 ad3antrrr φxPyP⟨“ABC”⟩𝒢G⟨“xEy”⟩xKEDyKEFBALine𝒢GXA=X
37 7 ad3antrrr φxPyP⟨“ABC”⟩𝒢G⟨“xEy”⟩xKEDyKEFCP
38 simplr φxPyP⟨“ABC”⟩𝒢G⟨“xEy”⟩xKEDyKEFyP
39 simpr1 φxPyP⟨“ABC”⟩𝒢G⟨“xEy”⟩xKEDyKEF⟨“ABC”⟩𝒢G⟨“xEy”⟩
40 1 13 2 24 20 21 22 37 25 26 38 39 cgr3simp1 φxPyP⟨“ABC”⟩𝒢G⟨“xEy”⟩xKEDyKEFA-˙B=x-˙E
41 17 ad3antrrr φxPyP⟨“ABC”⟩𝒢G⟨“xEy”⟩xKEDyKEFB-˙X=E-˙D
42 eqid 𝒢G=𝒢G
43 simpr2 φxPyP⟨“ABC”⟩𝒢G⟨“xEy”⟩xKEDyKEFxKED
44 1 2 3 25 28 26 20 ishlg φxPyP⟨“ABC”⟩𝒢G⟨“xEy”⟩xKEDyKEFxKEDxEDExEIDDEIx
45 43 44 mpbid φxPyP⟨“ABC”⟩𝒢G⟨“xEy”⟩xKEDyKEFxEDExEIDDEIx
46 45 simp3d φxPyP⟨“ABC”⟩𝒢G⟨“xEy”⟩xKEDyKEFxEIDDEIx
47 1 2 3 12 5 6 4 ishlg φXKBAXBABXBIAABIX
48 15 47 mpbid φXBABXBIAABIX
49 48 simp3d φXBIAABIX
50 49 orcomd φABIXXBIA
51 50 ad3antrrr φxPyP⟨“ABC”⟩𝒢G⟨“xEy”⟩xKEDyKEFABIXXBIA
52 40 eqcomd φxPyP⟨“ABC”⟩𝒢G⟨“xEy”⟩xKEDyKEFx-˙E=A-˙B
53 1 13 2 20 25 26 21 22 52 tgcgrcomlr φxPyP⟨“ABC”⟩𝒢G⟨“xEy”⟩xKEDyKEFE-˙x=B-˙A
54 41 eqcomd φxPyP⟨“ABC”⟩𝒢G⟨“xEy”⟩xKEDyKEFE-˙D=B-˙X
55 1 13 2 42 20 26 25 28 22 22 21 23 46 51 53 54 tgcgrsub2 φxPyP⟨“ABC”⟩𝒢G⟨“xEy”⟩xKEDyKEFx-˙D=A-˙X
56 55 eqcomd φxPyP⟨“ABC”⟩𝒢G⟨“xEy”⟩xKEDyKEFA-˙X=x-˙D
57 1 13 2 20 21 23 25 28 56 tgcgrcomlr φxPyP⟨“ABC”⟩𝒢G⟨“xEy”⟩xKEDyKEFX-˙A=D-˙x
58 1 13 24 20 21 22 23 25 26 28 40 41 57 trgcgr φxPyP⟨“ABC”⟩𝒢G⟨“xEy”⟩xKEDyKEF⟨“ABX”⟩𝒢G⟨“xED”⟩
59 1 2 3 14 7 6 4 19 16 hlln φYCLine𝒢GB
60 59 orcd φYCLine𝒢GBC=B
61 1 19 2 4 7 6 14 60 colrot1 φCBLine𝒢GYB=Y
62 61 ad3antrrr φxPyP⟨“ABC”⟩𝒢G⟨“xEy”⟩xKEDyKEFCBLine𝒢GYB=Y
63 1 13 2 24 20 21 22 37 25 26 38 39 cgr3simp2 φxPyP⟨“ABC”⟩𝒢G⟨“xEy”⟩xKEDyKEFB-˙C=E-˙y
64 1 2 3 14 7 6 4 ishlg φYKBCYBCBYBICCBIY
65 16 64 mpbid φYBCBYBICCBIY
66 65 simp3d φYBICCBIY
67 66 orcomd φCBIYYBIC
68 67 ad3antrrr φxPyP⟨“ABC”⟩𝒢G⟨“xEy”⟩xKEDyKEFCBIYYBIC
69 simpr3 φxPyP⟨“ABC”⟩𝒢G⟨“xEy”⟩xKEDyKEFyKEF
70 1 2 3 38 29 26 20 ishlg φxPyP⟨“ABC”⟩𝒢G⟨“xEy”⟩xKEDyKEFyKEFyEFEyEIFFEIy
71 69 70 mpbid φxPyP⟨“ABC”⟩𝒢G⟨“xEy”⟩xKEDyKEFyEFEyEIFFEIy
72 71 simp3d φxPyP⟨“ABC”⟩𝒢G⟨“xEy”⟩xKEDyKEFyEIFFEIy
73 18 ad3antrrr φxPyP⟨“ABC”⟩𝒢G⟨“xEy”⟩xKEDyKEFB-˙Y=E-˙F
74 1 13 2 42 20 22 37 27 26 26 38 29 68 72 63 73 tgcgrsub2 φxPyP⟨“ABC”⟩𝒢G⟨“xEy”⟩xKEDyKEFC-˙Y=y-˙F
75 1 13 2 20 22 27 26 29 73 tgcgrcomlr φxPyP⟨“ABC”⟩𝒢G⟨“xEy”⟩xKEDyKEFY-˙B=F-˙E
76 1 13 24 20 22 37 27 26 38 29 63 74 75 trgcgr φxPyP⟨“ABC”⟩𝒢G⟨“xEy”⟩xKEDyKEF⟨“BCY”⟩𝒢G⟨“EyF”⟩
77 53 eqcomd φxPyP⟨“ABC”⟩𝒢G⟨“xEy”⟩xKEDyKEFB-˙A=E-˙x
78 1 13 2 24 20 21 22 37 25 26 38 39 cgr3simp3 φxPyP⟨“ABC”⟩𝒢G⟨“xEy”⟩xKEDyKEFC-˙A=y-˙x
79 1 2 3 4 5 6 7 8 9 10 11 cgrane2 φBC
80 79 ad3antrrr φxPyP⟨“ABC”⟩𝒢G⟨“xEy”⟩xKEDyKEFBC
81 1 19 2 20 22 37 27 24 26 38 13 21 29 25 62 76 77 78 80 tgfscgr φxPyP⟨“ABC”⟩𝒢G⟨“xEy”⟩xKEDyKEFY-˙A=F-˙x
82 1 13 2 20 27 21 29 25 81 tgcgrcomlr φxPyP⟨“ABC”⟩𝒢G⟨“xEy”⟩xKEDyKEFA-˙Y=x-˙F
83 30 ad3antrrr φxPyP⟨“ABC”⟩𝒢G⟨“xEy”⟩xKEDyKEFAB
84 1 19 2 20 21 22 23 24 25 26 13 27 28 29 36 58 82 73 83 tgfscgr φxPyP⟨“ABC”⟩𝒢G⟨“xEy”⟩xKEDyKEFX-˙Y=D-˙F
85 1 2 3 4 5 6 7 8 9 10 iscgra φ⟨“ABC”⟩𝒢G⟨“DEF”⟩xPyP⟨“ABC”⟩𝒢G⟨“xEy”⟩xKEDyKEF
86 11 85 mpbid φxPyP⟨“ABC”⟩𝒢G⟨“xEy”⟩xKEDyKEF
87 84 86 r19.29vva φX-˙Y=D-˙F