Metamath Proof Explorer


Theorem cgraid

Description: Angle congruence is reflexive. Theorem 11.6 of Schwabhauser p. 96. (Contributed by Thierry Arnoux, 31-Jul-2020)

Ref Expression
Hypotheses cgraid.p P=BaseG
cgraid.i I=ItvG
cgraid.g φG𝒢Tarski
cgraid.k K=hl𝒢G
cgraid.a φAP
cgraid.b φBP
cgraid.c φCP
cgraid.1 φAB
cgraid.2 φBC
Assertion cgraid φ⟨“ABC”⟩𝒢G⟨“ABC”⟩

Proof

Step Hyp Ref Expression
1 cgraid.p P=BaseG
2 cgraid.i I=ItvG
3 cgraid.g φG𝒢Tarski
4 cgraid.k K=hl𝒢G
5 cgraid.a φAP
6 cgraid.b φBP
7 cgraid.c φCP
8 cgraid.1 φAB
9 cgraid.2 φBC
10 eqid distG=distG
11 eqid 𝒢G=𝒢G
12 1 10 2 11 3 5 6 7 cgr3id φ⟨“ABC”⟩𝒢G⟨“ABC”⟩
13 1 2 4 5 5 6 3 8 hlid φAKBA
14 9 necomd φCB
15 1 2 4 7 5 6 3 14 hlid φCKBC
16 1 2 4 3 5 6 7 5 6 7 5 7 12 13 15 iscgrad φ⟨“ABC”⟩𝒢G⟨“ABC”⟩