Metamath Proof Explorer


Theorem cgraswap

Description: Swap rays in a congruence relation. Theorem 11.9 of Schwabhauser p. 96. (Contributed by Thierry Arnoux, 5-Mar-2020)

Ref Expression
Hypotheses cgraid.p P = Base G
cgraid.i I = Itv G
cgraid.g φ G 𝒢 Tarski
cgraid.k K = hl 𝒢 G
cgraid.a φ A P
cgraid.b φ B P
cgraid.c φ C P
cgraid.1 φ A B
cgraid.2 φ B C
Assertion cgraswap φ ⟨“ ABC ”⟩ 𝒢 G ⟨“ CBA ”⟩

Proof

Step Hyp Ref Expression
1 cgraid.p P = Base G
2 cgraid.i I = Itv G
3 cgraid.g φ G 𝒢 Tarski
4 cgraid.k K = hl 𝒢 G
5 cgraid.a φ A P
6 cgraid.b φ B P
7 cgraid.c φ C P
8 cgraid.1 φ A B
9 cgraid.2 φ B C
10 eqid dist G = dist G
11 eqid 𝒢 G = 𝒢 G
12 3 ad3antrrr φ x P y P x K B C B dist G x = B dist G A y K B A B dist G y = B dist G C G 𝒢 Tarski
13 5 ad3antrrr φ x P y P x K B C B dist G x = B dist G A y K B A B dist G y = B dist G C A P
14 6 ad3antrrr φ x P y P x K B C B dist G x = B dist G A y K B A B dist G y = B dist G C B P
15 7 ad3antrrr φ x P y P x K B C B dist G x = B dist G A y K B A B dist G y = B dist G C C P
16 simpllr φ x P y P x K B C B dist G x = B dist G A y K B A B dist G y = B dist G C x P
17 simplr φ x P y P x K B C B dist G x = B dist G A y K B A B dist G y = B dist G C y P
18 simprlr φ x P y P x K B C B dist G x = B dist G A y K B A B dist G y = B dist G C B dist G x = B dist G A
19 1 10 2 12 14 16 14 13 18 tgcgrcomlr φ x P y P x K B C B dist G x = B dist G A y K B A B dist G y = B dist G C x dist G B = A dist G B
20 19 eqcomd φ x P y P x K B C B dist G x = B dist G A y K B A B dist G y = B dist G C A dist G B = x dist G B
21 simprrr φ x P y P x K B C B dist G x = B dist G A y K B A B dist G y = B dist G C B dist G y = B dist G C
22 21 eqcomd φ x P y P x K B C B dist G x = B dist G A y K B A B dist G y = B dist G C B dist G C = B dist G y
23 eqid Line 𝒢 G = Line 𝒢 G
24 simprll φ x P y P x K B C B dist G x = B dist G A y K B A B dist G y = B dist G C x K B C
25 1 2 4 16 15 14 12 23 24 hlln φ x P y P x K B C B dist G x = B dist G A y K B A B dist G y = B dist G C x C Line 𝒢 G B
26 25 orcd φ x P y P x K B C B dist G x = B dist G A y K B A B dist G y = B dist G C x C Line 𝒢 G B C = B
27 1 23 2 12 15 14 16 26 colrot1 φ x P y P x K B C B dist G x = B dist G A y K B A B dist G y = B dist G C C B Line 𝒢 G x B = x
28 eqid 𝒢 G = 𝒢 G
29 1 2 4 16 15 14 12 ishlg φ x P y P x K B C B dist G x = B dist G A y K B A B dist G y = B dist G C x K B C x B C B x B I C C B I x
30 24 29 mpbid φ x P y P x K B C B dist G x = B dist G A y K B A B dist G y = B dist G C x B C B x B I C C B I x
31 30 simp3d φ x P y P x K B C B dist G x = B dist G A y K B A B dist G y = B dist G C x B I C C B I x
32 31 orcomd φ x P y P x K B C B dist G x = B dist G A y K B A B dist G y = B dist G C C B I x x B I C
33 simprrl φ x P y P x K B C B dist G x = B dist G A y K B A B dist G y = B dist G C y K B A
34 1 2 4 17 13 14 12 ishlg φ x P y P x K B C B dist G x = B dist G A y K B A B dist G y = B dist G C y K B A y B A B y B I A A B I y
35 33 34 mpbid φ x P y P x K B C B dist G x = B dist G A y K B A B dist G y = B dist G C y B A B y B I A A B I y
36 35 simp3d φ x P y P x K B C B dist G x = B dist G A y K B A B dist G y = B dist G C y B I A A B I y
37 1 10 2 28 12 14 15 16 14 14 17 13 32 36 22 18 tgcgrsub2 φ x P y P x K B C B dist G x = B dist G A y K B A B dist G y = B dist G C C dist G x = y dist G A
38 1 10 11 12 14 15 16 14 17 13 22 37 19 trgcgr φ x P y P x K B C B dist G x = B dist G A y K B A B dist G y = B dist G C ⟨“ BCx ”⟩ 𝒢 G ⟨“ ByA ”⟩
39 1 10 2 12 15 17 axtgcgrrflx φ x P y P x K B C B dist G x = B dist G A y K B A B dist G y = B dist G C C dist G y = y dist G C
40 9 ad3antrrr φ x P y P x K B C B dist G x = B dist G A y K B A B dist G y = B dist G C B C
41 1 23 2 12 14 15 16 11 14 17 10 17 13 15 27 38 21 39 40 tgfscgr φ x P y P x K B C B dist G x = B dist G A y K B A B dist G y = B dist G C x dist G y = A dist G C
42 1 10 2 12 16 17 13 15 41 tgcgrcomlr φ x P y P x K B C B dist G x = B dist G A y K B A B dist G y = B dist G C y dist G x = C dist G A
43 42 eqcomd φ x P y P x K B C B dist G x = B dist G A y K B A B dist G y = B dist G C C dist G A = y dist G x
44 1 10 11 12 13 14 15 16 14 17 20 22 43 trgcgr φ x P y P x K B C B dist G x = B dist G A y K B A B dist G y = B dist G C ⟨“ ABC ”⟩ 𝒢 G ⟨“ xBy ”⟩
45 44 24 33 3jca φ x P y P x K B C B dist G x = B dist G A y K B A B dist G y = B dist G C ⟨“ ABC ”⟩ 𝒢 G ⟨“ xBy ”⟩ x K B C y K B A
46 9 necomd φ C B
47 8 necomd φ B A
48 1 2 4 6 6 5 3 7 10 46 47 hlcgrex φ x P x K B C B dist G x = B dist G A
49 1 2 4 6 6 7 3 5 10 8 9 hlcgrex φ y P y K B A B dist G y = B dist G C
50 reeanv x P y P x K B C B dist G x = B dist G A y K B A B dist G y = B dist G C x P x K B C B dist G x = B dist G A y P y K B A B dist G y = B dist G C
51 48 49 50 sylanbrc φ x P y P x K B C B dist G x = B dist G A y K B A B dist G y = B dist G C
52 45 51 reximddv2 φ x P y P ⟨“ ABC ”⟩ 𝒢 G ⟨“ xBy ”⟩ x K B C y K B A
53 1 2 4 3 5 6 7 7 6 5 iscgra φ ⟨“ ABC ”⟩ 𝒢 G ⟨“ CBA ”⟩ x P y P ⟨“ ABC ”⟩ 𝒢 G ⟨“ xBy ”⟩ x K B C y K B A
54 52 53 mpbird φ ⟨“ ABC ”⟩ 𝒢 G ⟨“ CBA ”⟩