| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cgraid.p |
|- P = ( Base ` G ) |
| 2 |
|
cgraid.i |
|- I = ( Itv ` G ) |
| 3 |
|
cgraid.g |
|- ( ph -> G e. TarskiG ) |
| 4 |
|
cgraid.k |
|- K = ( hlG ` G ) |
| 5 |
|
cgraid.a |
|- ( ph -> A e. P ) |
| 6 |
|
cgraid.b |
|- ( ph -> B e. P ) |
| 7 |
|
cgraid.c |
|- ( ph -> C e. P ) |
| 8 |
|
cgraid.1 |
|- ( ph -> A =/= B ) |
| 9 |
|
cgraid.2 |
|- ( ph -> B =/= C ) |
| 10 |
|
eqid |
|- ( dist ` G ) = ( dist ` G ) |
| 11 |
|
eqid |
|- ( cgrG ` G ) = ( cgrG ` G ) |
| 12 |
3
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> G e. TarskiG ) |
| 13 |
5
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> A e. P ) |
| 14 |
6
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> B e. P ) |
| 15 |
7
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> C e. P ) |
| 16 |
|
simpllr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> x e. P ) |
| 17 |
|
simplr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> y e. P ) |
| 18 |
|
simprlr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) |
| 19 |
1 10 2 12 14 16 14 13 18
|
tgcgrcomlr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> ( x ( dist ` G ) B ) = ( A ( dist ` G ) B ) ) |
| 20 |
19
|
eqcomd |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> ( A ( dist ` G ) B ) = ( x ( dist ` G ) B ) ) |
| 21 |
|
simprrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) |
| 22 |
21
|
eqcomd |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> ( B ( dist ` G ) C ) = ( B ( dist ` G ) y ) ) |
| 23 |
|
eqid |
|- ( LineG ` G ) = ( LineG ` G ) |
| 24 |
|
simprll |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> x ( K ` B ) C ) |
| 25 |
1 2 4 16 15 14 12 23 24
|
hlln |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> x e. ( C ( LineG ` G ) B ) ) |
| 26 |
25
|
orcd |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> ( x e. ( C ( LineG ` G ) B ) \/ C = B ) ) |
| 27 |
1 23 2 12 15 14 16 26
|
colrot1 |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> ( C e. ( B ( LineG ` G ) x ) \/ B = x ) ) |
| 28 |
|
eqid |
|- ( leG ` G ) = ( leG ` G ) |
| 29 |
1 2 4 16 15 14 12
|
ishlg |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> ( x ( K ` B ) C <-> ( x =/= B /\ C =/= B /\ ( x e. ( B I C ) \/ C e. ( B I x ) ) ) ) ) |
| 30 |
24 29
|
mpbid |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> ( x =/= B /\ C =/= B /\ ( x e. ( B I C ) \/ C e. ( B I x ) ) ) ) |
| 31 |
30
|
simp3d |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> ( x e. ( B I C ) \/ C e. ( B I x ) ) ) |
| 32 |
31
|
orcomd |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> ( C e. ( B I x ) \/ x e. ( B I C ) ) ) |
| 33 |
|
simprrl |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> y ( K ` B ) A ) |
| 34 |
1 2 4 17 13 14 12
|
ishlg |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> ( y ( K ` B ) A <-> ( y =/= B /\ A =/= B /\ ( y e. ( B I A ) \/ A e. ( B I y ) ) ) ) ) |
| 35 |
33 34
|
mpbid |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> ( y =/= B /\ A =/= B /\ ( y e. ( B I A ) \/ A e. ( B I y ) ) ) ) |
| 36 |
35
|
simp3d |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> ( y e. ( B I A ) \/ A e. ( B I y ) ) ) |
| 37 |
1 10 2 28 12 14 15 16 14 14 17 13 32 36 22 18
|
tgcgrsub2 |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> ( C ( dist ` G ) x ) = ( y ( dist ` G ) A ) ) |
| 38 |
1 10 11 12 14 15 16 14 17 13 22 37 19
|
trgcgr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> <" B C x "> ( cgrG ` G ) <" B y A "> ) |
| 39 |
1 10 2 12 15 17
|
axtgcgrrflx |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> ( C ( dist ` G ) y ) = ( y ( dist ` G ) C ) ) |
| 40 |
9
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> B =/= C ) |
| 41 |
1 23 2 12 14 15 16 11 14 17 10 17 13 15 27 38 21 39 40
|
tgfscgr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> ( x ( dist ` G ) y ) = ( A ( dist ` G ) C ) ) |
| 42 |
1 10 2 12 16 17 13 15 41
|
tgcgrcomlr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> ( y ( dist ` G ) x ) = ( C ( dist ` G ) A ) ) |
| 43 |
42
|
eqcomd |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> ( C ( dist ` G ) A ) = ( y ( dist ` G ) x ) ) |
| 44 |
1 10 11 12 13 14 15 16 14 17 20 22 43
|
trgcgr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> <" A B C "> ( cgrG ` G ) <" x B y "> ) |
| 45 |
44 24 33
|
3jca |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) -> ( <" A B C "> ( cgrG ` G ) <" x B y "> /\ x ( K ` B ) C /\ y ( K ` B ) A ) ) |
| 46 |
9
|
necomd |
|- ( ph -> C =/= B ) |
| 47 |
8
|
necomd |
|- ( ph -> B =/= A ) |
| 48 |
1 2 4 6 6 5 3 7 10 46 47
|
hlcgrex |
|- ( ph -> E. x e. P ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) ) |
| 49 |
1 2 4 6 6 7 3 5 10 8 9
|
hlcgrex |
|- ( ph -> E. y e. P ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) |
| 50 |
|
reeanv |
|- ( E. x e. P E. y e. P ( ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) <-> ( E. x e. P ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ E. y e. P ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) |
| 51 |
48 49 50
|
sylanbrc |
|- ( ph -> E. x e. P E. y e. P ( ( x ( K ` B ) C /\ ( B ( dist ` G ) x ) = ( B ( dist ` G ) A ) ) /\ ( y ( K ` B ) A /\ ( B ( dist ` G ) y ) = ( B ( dist ` G ) C ) ) ) ) |
| 52 |
45 51
|
reximddv2 |
|- ( ph -> E. x e. P E. y e. P ( <" A B C "> ( cgrG ` G ) <" x B y "> /\ x ( K ` B ) C /\ y ( K ` B ) A ) ) |
| 53 |
1 2 4 3 5 6 7 7 6 5
|
iscgra |
|- ( ph -> ( <" A B C "> ( cgrA ` G ) <" C B A "> <-> E. x e. P E. y e. P ( <" A B C "> ( cgrG ` G ) <" x B y "> /\ x ( K ` B ) C /\ y ( K ` B ) A ) ) ) |
| 54 |
52 53
|
mpbird |
|- ( ph -> <" A B C "> ( cgrA ` G ) <" C B A "> ) |