| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cgraid.p |
|- P = ( Base ` G ) |
| 2 |
|
cgraid.i |
|- I = ( Itv ` G ) |
| 3 |
|
cgraid.g |
|- ( ph -> G e. TarskiG ) |
| 4 |
|
cgraid.k |
|- K = ( hlG ` G ) |
| 5 |
|
cgraid.a |
|- ( ph -> A e. P ) |
| 6 |
|
cgraid.b |
|- ( ph -> B e. P ) |
| 7 |
|
cgraid.c |
|- ( ph -> C e. P ) |
| 8 |
|
cgracom.d |
|- ( ph -> D e. P ) |
| 9 |
|
cgracom.e |
|- ( ph -> E e. P ) |
| 10 |
|
cgracom.f |
|- ( ph -> F e. P ) |
| 11 |
|
cgrcgra.1 |
|- ( ph -> A =/= B ) |
| 12 |
|
cgrcgra.2 |
|- ( ph -> B =/= C ) |
| 13 |
|
cgrcgra.3 |
|- ( ph -> <" A B C "> ( cgrG ` G ) <" D E F "> ) |
| 14 |
|
eqid |
|- ( dist ` G ) = ( dist ` G ) |
| 15 |
|
eqid |
|- ( cgrG ` G ) = ( cgrG ` G ) |
| 16 |
1 14 2 15 3 5 6 7 8 9 10 13
|
cgr3simp1 |
|- ( ph -> ( A ( dist ` G ) B ) = ( D ( dist ` G ) E ) ) |
| 17 |
1 14 2 3 5 6 8 9 16 11
|
tgcgrneq |
|- ( ph -> D =/= E ) |
| 18 |
1 2 4 8 5 9 3 17
|
hlid |
|- ( ph -> D ( K ` E ) D ) |
| 19 |
1 14 2 15 3 5 6 7 8 9 10 13
|
cgr3simp2 |
|- ( ph -> ( B ( dist ` G ) C ) = ( E ( dist ` G ) F ) ) |
| 20 |
1 14 2 3 6 7 9 10 19
|
tgcgrcomlr |
|- ( ph -> ( C ( dist ` G ) B ) = ( F ( dist ` G ) E ) ) |
| 21 |
12
|
necomd |
|- ( ph -> C =/= B ) |
| 22 |
1 14 2 3 7 6 10 9 20 21
|
tgcgrneq |
|- ( ph -> F =/= E ) |
| 23 |
1 2 4 10 5 9 3 22
|
hlid |
|- ( ph -> F ( K ` E ) F ) |
| 24 |
1 2 4 3 5 6 7 8 9 10 8 10 13 18 23
|
iscgrad |
|- ( ph -> <" A B C "> ( cgrA ` G ) <" D E F "> ) |